MINIREVIEW

Significance of meningococcal hyperinvasive clonal complexes and their influence on vaccines development
WAŚKO I., HRYNIEWICZ W., SKOCZYŃSKA A. 313

ORIGINAL PAPERS

Prevalence of Polyoma BK virus (BKPyV), Epstein-Barr virus (EBV) and Human Papilloma virus (HPV) in oropharyngeal cancer
POLZ-GRUZSKA D., MORSHED K., JARZYŃSKI A., POLZ-DACEWICZ M. .. 323

Biodecolorization and bioremediation of denim industrial wastewater by adapted bacterial consortium immobilized on inert polyurethane foam (PUF) matrix: A first approach with biobarrier model
RAJENDRAN R., PRABHAVATHI P., KARTHIKSUNDARAM S., PATTABI S., DINESH KUMAR S., SANTHANAM P. 329

Isolation and characterization of Streptomyces with plant growth promoting potential from mangrove ecosystem
SHRIVASTAVA P., KUMAR R., YANDIGERI M.S., MALVIYA N., ARORA D.K. ... 339

Germination and inactivation of Alicyclobacillus acidoterrestris spores induced by moderate hydrostatic pressure
SOKOŁOWSKA B., SKĄPSKA S., FONBERG-BROCZEK M., NIEZGODA J., PORĘBSKA L., DEKOWSKA A., RZOSKA S.J. 351

Autochthonous gut bacteria in two Indian air-breathing fish, climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus): mode of association, identification and enzyme producing ability
BANEJEE G., DAN S.K., NANDI A., GHOSH P., RAY A.K. ... 361

Physiology and molecular phylogeny of bacteria isolated from alkaline distillery lime
KALWASIŃSKA A., FELFÓLDI T., WALCZAK M., KOSOBUCKI P. .. 369

SHORT COMMUNICATIONS

Inhibitory effect of newly-synthesized chalcones on hemolytic activity of methicillin-resistant Staphylococcus aureus
BOŽIĆ D.D., MILENKOVIĆ M.T., IVKOVIĆ B.M., LARSEN A.R., CIRKOVIĆ I.B. ... 379

Molecular methods for identification of monophasic Salmonella typhimurium strains
MADAJCZAK G., DERA-TOMASZEWSKA B., WASIAK M., CHRÓST A., SZYCH J. .. 383

Probable interspecies transfer of the blaVIM4 gene between Enterobacter cloacae and Klebsiella pneumoniae in a single infant patient
PIEKARSKA K., Zacharczyk K., RZECZKOWSKA M., WOŁKOWICZ T., JANUSZKIEWICZ A., PODSIADŁY E., DEMKOW U., GIERCZYŃSKI B. ... 387

Five Years’ Evaluation of the BD ProbeTec System for the direct molecular detection of Mycobacterium tuberculosis complex in respiratory and nonrespiratory clinical samples
BICMEN C., KARAMAN O., GUNDUZ A.T., ERER O.F., COSKUN M., KAFTAN O., DEMIREL M.M., SENOL G., AKARCA T., DERELI S., OZSOZ A. ... 391

Tuberculosis in antelopes in a zoo in Poland – problem of public health

Drug resistance and population structure of Mycobacterium tuberculosis Beijing strains isolated in Poland
KOZIŃSKA M., AUGUSTYNOWICZ-KOPEĆ E. ... 399
Neisseria meningitidis is a commensal of human nasopharynx and humans are the only known reservoir and host of this bacterium. It is also known as a dangerous and devastating pathogen, and infection with N. meningitidis may lead to rapidly progressing septicemia or meningitis. These severe infections, called invasive meningococcal disease (IMD), are one of the major public health threats worldwide. IMD may occur sporadically, but also in outbreaks, epidemics, and pandemics. Most of the IMD cases in the world are caused by isolates of genetically related groups, clonal complexes (CC), including those with special epidemiological significance called hyperinvasive clonal complexes. It is still unknown why some of them may persist for decades, whereas other are quickly replaced and disappear. As a consequence, the epidemiological situation of IMD is variable worldwide and greatly depends on the emergence and widespread of clones belonging to hyperinvasive clonal complexes. Their occurrence has serious implications for health policy, requiring often mass immunization campaigns. Paradoxically, alarming situations caused by hyperinvasive CCs stimulated the development and introduction of new vaccines against meningococci. Despite the unquestionable success of these vaccines, isolates of hyperinvasive clones constitute a permanent public health threat, because they are constantly circulating and able to modify their antigenic profiles to escape the host immune response. Therefore, continuous monitoring of meningococcal isolates including thorough molecular typing is indispensable and fundamental for taking appropriate preventive measures.

Key words: Neisseria meningitidis, clonal complex, epidemic, invasive meningococcal disease (IMD), meningococcal epidemiology
et al., 2013; Panatto et al., 2013; Vipond et al., 2012) and others like Bexsero®, recently licensed in Europe (EMA, 2013) and in the USA (FDA, 2015) or Trumenba® up to date in the USA only (FDA, 2014).

Meningococcal virulence

Although many components and mechanisms associated with meningococcal virulence have been studied, the pathogenesis of IMD is still not fully understood. There are several bacterial factors like capsule, outer membrane components including i.e. pili, lipooligosaccharide (LOS) and outer membrane proteins (OMPs) which are associated with adhesion, transmission and invasion of meningococci. The key factor linked to meningococcal virulence is a polysaccharide capsule determining the serogroup. It has antiadherent properties affecting transmission and protects bacteria from phagocytosis, opsonization and complement-dependent bacteriolysis during invasion of host cells. It is also the major antigen of meningococci (except MenB) leading to a rise of bactericidal antibodies. Taking these into account and the fact that antigens A, C, W and Y have been predominant among meningococci, they have been used in polysaccharide and/or conjugate vaccines. Among other meningococcal factors which promote adherence to host cells, are pili and opacity proteins (i.e. Opa, Opc). Lipooligosaccharide is also involved in adherence and is known for its strong endotoxic activity. Porins such as PorA, PorB allow the passage of ions across the cell membrane. They modulate apoptosis and influence host immune response. Because they induce bactericidal antibodies during meningococcal disease, they have been used as vaccine antigens. Additionally, differences in porins composition are the basis of identification of serotype (PorB) and serosubtype (PorA). Proteins associated with iron acquisition e.g. FetA are also related to virulence and like porins are the target for bactericidal antibodies. In recent years many other outer membrane proteins have been identified, which are involved in the pathogenesis of IMD. Some of them became already, whereas others are still promising vaccine candidates. (Hill et al., 2010; Tzeng and Stephens, 2000). Expression of the above mentioned components is dependent on many mechanisms. For example, the ability of meningococci to exchange genetic material responsible for capsule synthesis may cause modification of the capsule and change of serogroup, called capsule switching (Swartley, 1997). This property applies also to surface protein antigens like e.g. PorA, PorB, FetA (antigenic swift). Other mechanisms lead to on/off expression (phase variability) and concerns i.e. the capsule and LPS. Consequently, meningococci can become unrecognizable by the host and may escape from the immune response (Hill et al., 2010, Tzeng and Stephens, 2000).

It is for sure that the course of infection depends not only on a bacteria’s ability to invade, but also is host and environmental dependent. Factors that predispose to IMD are i.e. the lack of protective bactericidal antibodies, defects in the terminal complement pathway (C5-C9), the lack of properdin, immune suppression associated with splenectomy, nephritic syndrome or hypogammaglobulinemia. Viral upper respiratory tract infections as well as active and passive smoking are associated with injury of respiratory mucosa, which is a barrier to invasion, therefore its damage increases the risk of bacterial transmission and IMD. Transmission is also simplified by close contact with patient and crowding conditions e.g. in dormitory, military base, social events (Rosenstein et al., 2001; Tzeng and Stephens, 2000).

Epidemiology of IMD

IMD may occur sporadically, but also in outbreaks, epidemics, and pandemics. The incidence of IMD is geographically variable and age-specific. The overall incidence is from less than 0.5 cases/100 000 to 1000 cases/100 000 population during epidemics in the sub-Saharan African countries (so-called “meningitis belt”) (Halperin et al., 2012). The incidence is the highest in children under 5 (especially in infants), teenagers and young adults (Rosenstein et al., 2001; Stephens, 2009).

Distribution of serogroups varies globally, and has been changing during past decades. Meningococci of serogroups B and C (MenC) have been predominant in Europe, Australia and the Americas. Both have been responsible for sporadic cases, but significantly MenC are related to multiple outbreaks and epidemics whereas MenB to threatening hyperendemic situations/prolonged epidemics. Meningococci of serogroup A (MenA) have been the cause of large, seasonal epidemics in Africa and were also prevailing in Asia while in other continents they are very rare (Halperin et al., 2012; Harrison et al., 2009). In Africa, meningococci of serogroup X have been also reported to cause large outbreaks between 2006 and 2010 (Jafri et al., 2013). Meningococci with capsule antigen Y are responsible for one third of IMD cases in the USA. Interestingly, they were rarely observed in Europe in the past, while recently noteworthy increase in the Scandinavian countries have been observed (Bröker et al., 2014; Harrison et al., 2009). Epidemic potential of serogroup W meningococci (MenW) associated generally with very sporadic IMD, was recognized during two epidemics started in Saudi Arabia during Hajj Pilgrimages and a large epidemic in Burkina Faso (Harrison et al., 2009; Jafri et al., 2013).
Molecular typing

To know and understand the epidemiology of IMD and why some isolates are more virulent than others, profound epidemiological analysis of cases including typing of isolates is needed. In the past, phenotype characteristics based on determination of serogroup: serotype:serosubtype (defined by capsule:PorB:PorA, respectively e.g. C:2a:P1.5,2) was used but because of lack, poor or masked expression of surface antigens, not all isolates could be typed. In contrast, molecular methods based on PCR and DNA sequencing, provide typing data always when a gene is present, even without protein expression. Additionally, most DNA-based methods can be directly used on clinical samples, when a culture is negative due to e.g. early antibiotic treatment. These techniques have higher discriminatory power and generally enable distinction between isolates responsible for outbreaks and sporadic cases. Currently, a widely used method in molecular typing is multilocus sequence typing (MLST). This technique was introduced for the first time in 1998, for meningococci and later adapted for other bacterial species. MLST is based on the sequencing of internal fragments of seven housekeeping genes whose alleles combinations determine sequence type (ST). Among meningococcal numerous STs, there are groups of epidemiologically significant and related STs called clonal complexes (CC). Each CC has one central ST, with the exception of 41/44CC which has two. Isolates that have at least four out of seven loci identical with central ST are considered to be related and form CC (Brehony et al., 2007; Maiden et al., 1998). At present, more than 10 000 sequence types are determined and grouped into 46 clonal complexes whereas these without relatedness to other STs were designated as singletons (http://pubmlst.org/neisseria/, Brehony et al., 2007). Despite large variability, there is a limited number of CCs characterised by increased propensity to cause invasive disease or epidemics. They are called hyperinvasive clonal complexes and are responsible for the majority of meningococcal infection in the world. Despite their deep analysis including genome sequencing in comparison to carriage strains, the reasons of their superiority and predominance are still not fully understood (Schoen et al., 2014)

The most common hyperinvasive clonal complexes responsible for IMD – historical background and the present status

Some hyperinvasive CCs have been persistent for many decades, other emerged recently or were prevalent in the past and nowadays are observed very rarely. In spite of this variability, among all hyperinvasive CCs the most frequently mentioned in the literature and overrepresented among meningococci are those belonging to ST-5CC, ST-32CC, ST-41/44CC and ST-11CC. European data confirmed that in 2011 meningococci of ST-41/44CC were the most common, followed by ST-32CC and ST-11CC and their percentage was estimated as high as 21%, 18.6% and 15.3%, respectively (Fig. 1.; Whittaker, 2013). Isolates of the four mentioned CCs have been associated in the past with large epidemics, numerous outbreaks, temporary/geographical incidence increase or long-lasting hyperendemic situations/prolonged epidemics. Their emergence and expansion required public health investigations and targeted interventions, like mass vaccination campaigns using available vaccines but also had an indisputable influence on the construction of new ones. (Table I) (Read, 2014; Watkins and Maiden, 2012).

ST-5CC

ST-5 clonal complex is represented by meningococci of serogroup A. Isolates belonging to this CC were in the past the cause of a few pandemics and since 80s have been predominant in Asia and especially in the “meningitis belt” comprising countries in Sahelian and sub-Sahelian Africa. These isolates have been devastating for Africa, being responsible for thousands of IMD cases during yearly epidemics starting with the dry season and cyclical large epidemics occurring every 5–10 years; for example in 1996 there were 150 000 cases and 16 000 deaths reported (Caugant and Nicolas, 2007; Achtman, 1997; Nicolas et al., 2005, Zhang et al., 2008). The extremely high number of infections and deaths as well as insufficient impact of polysaccharide vaccines, have led to initiate in 2001 the “Meningitis Vaccine
Project”, which resulted in developing an accessible, inexpensive conjugate polysaccharide vaccine against serogroup A for Africa, MenAfriVac* (www.meningvax.org). The vaccine was introduced in December 2010, first in Burkina Faso (Djingarey et al., 2012) and in accordance with the last data more than 217 million people in 15 countries have been vaccinated so far. The effects of mass vaccinations achieved so far are very promising. Decreased number of cases associated with serogroup A as well as sharp decline of the total incidence of IMD has been noticed (Daugla et al., 2014; Novak et al., 2012; www.meningvax.org) and MenA has disappeared from the "vaccinated" countries of the "meningitis belt” (Table I) (Caesar et al., 2013).

Table I

<table>
<thead>
<tr>
<th>Clonal complex</th>
<th>The most common serogroup/phenotype</th>
<th>Selected epidemiological occurrences</th>
<th>Time period</th>
<th>Vaccine used/developed</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-5CC Serogroup A</td>
<td>3 pandemics, all started in China and spread: 1. to Russia, Scandinavia and Brazil; 2. to Nepal, India, European countries, the USA and Africa; 3. to Mongolia and Moscow yearly epidemics during dry seasons and cyclical wide epidemics every 5–10 years with incidence rate reaching 1000/100 000</td>
<td>60s 80s 90s Since 80s</td>
<td>polysaccharide vaccines used in massive immunization campaigns since 2010 conjugate vaccine, MenAfriVac* in national immunization programmes</td>
<td>Achtman, 1997, Caugant and Nicolas, 2007, Nicolas et al., 2005 www.meningvax.org</td>
<td></td>
</tr>
<tr>
<td>ST-41/44CC B:4:P1.7–2,4</td>
<td>hyperendemic situation in New Zealand</td>
<td>90s–2000s</td>
<td>OMV vaccine MeNZB*</td>
<td>Holst et al., 2013 Martin and McDowell, 2004</td>
<td></td>
</tr>
<tr>
<td>ST-32CC B:15:P1.7,16</td>
<td>hyperendemic situation/prolonged outbreaks in • Norway • Oregon, the USA</td>
<td>60s and 70s 1990–2000s</td>
<td>OMV vaccine MenBvac*</td>
<td>Harrison et al., 2009 Holst et al., 2009</td>
<td></td>
</tr>
<tr>
<td>B:14:P1.7,16 • Normandy, France</td>
<td>2000s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B:4:P19,15</td>
<td>hyperendemic situation/prolonged outbreaks in • Spain • Cuba, Brazil and South Africa</td>
<td>70s 80s</td>
<td>OMV vaccine VA-MENGO-BC*</td>
<td>Pannato et al., 2013 Racloz and Luis, 2010</td>
<td></td>
</tr>
<tr>
<td>B:15:P1.3</td>
<td>outbreaks in Chile</td>
<td>80s</td>
<td>OMV vaccine WRAIr*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST-11CC Serogroup C</td>
<td>outbreaks and increase of IMD incidence in Canada, the USA, Israel, Czech Republic, Iceland, Finland, Norway, the UK, Greece, Spain and Australia. further widespread all over the world</td>
<td>Since mid-80s</td>
<td>initially polysaccharide vaccines used in massive immunization campaigns conjugate vaccines against MenC (MCC) in national immunization programmes in many European countries and Americas</td>
<td>Campbell et al., 2009 Halperin et al., 2012 Harrison et al., 2010 Jafri et al, 2013 Müller et al., 2002</td>
<td></td>
</tr>
<tr>
<td>Serogroup W</td>
<td>international epidemics associated with the Hajj Pilgrimage to Mecca, when epidemic clone was transferred into 16 countries i.e. the USA, the UK, Nordic countries, Europe wave of epidemics in Burkina Faso with app. 12 000 cases</td>
<td>2000, 2001</td>
<td>polysaccharide vaccines used in massive immunization campaigns</td>
<td>Hahné et al., 2002, Harrison et al., 2009 Mayer et al., 2002, Taha et al., 2000</td>
<td></td>
</tr>
</tbody>
</table>

ST-41/44CC and ST-32CC

Nowadays ST-41/44CC is the most common CC among MenB in Europe representing 31.7%. Its members are observed not only among MenB but also MenC and non-groupable meningococci (Whittaker, 2013). For example in Poland in the period 2009–2011 this CC was the third and the second most common CC among meningococci of serogroup B and C, respectively (Skoczyńska et al., 2013). According to the MLST database, ST-41/44CC is very diverse, containing the highest number of STs among hypervirulent clonal complexes. At the time of writing as many as 1800 sequence types have been assigned to this CC.
while ST-5CC, ST-32CC or ST-11CC include 53, 597 and 359 STs, respectively (http://pubmlst.org/neisseria/). At present, members of this complex are circulating worldwide, being responsible mainly for sporadic cases, but in the past it was different. For example in New Zealand, a clone of ST-41/44CC with phenotype B:4:P7-2,4 caused a threatening hyperendemic situation (Watkins and Maiden, 2012). A yearly increase in the number of IMD cases (from 53 in 1990 to 650 in 2001) forced the development of an OMV vaccine containing protein antigens of epidemic clone in order to stop its further expansion (Martin and McDowell, 2004). The vaccine proved to be effective, decreasing IMD incidence from 24.7/100 000 in 2001 to 2.6/100 000 in 2008 (Table I) (Holst et al., 2013). Taking this success into consideration as well as the clone with phenotype B:P7-2,4 worldwide distribution and OMVs adjuvant properties, vesicles from MenZB® vaccine have been used recently in a new 4-component vaccine 4CMenB, Bexsero®. The vaccine contains also other protein antigens like factor H-binding protein (fHbp), neisserial heparin-binding antigen (NHBA) and neisserial adhesin A (NadA) identified by reverse vaccinology (Caesar et al., 2013; Pannato et al., 2013; Serruto et al., 2012). Analysis of MenB conducted in many countries showed high predicted coverage by the 4CMenB vaccine and it is believed that this vaccine will be efficacious against the majority of serogroup B meningococci (Vogel et al., 2013).

Second, the most common CC among MenB is ST-32CC. In 2011 meningococci B/ST-32CC represented 27.8% of MenB responsible for IMD in Europe while in Poland between 2009–2011 ST-32CC meningococci were predominant and represented 32.4% of MenB (Skoczynska et al., 2013; Whittaker, 2013). ST-32CC isolates have been related mainly to sporadic IMD. However, in the past, as already mentioned Men-41/44CC, meningococci of this complex were the cause of few prolonged epidemics. The first report of epidemic potential of ST-32CC came from Norway, from 1969. Then its spread throughout European countries, South Africa and the Americas was observed (Harrison et al., 2009; Harrison et al., 2010; Racloz and Luiz, 2010). According to the MLST database and phenotyping analysis, three epidemic clones were characterized. To control these strain-specific serogroup B epidemics, three OMV vaccines were developed (Table I). Although their safety and effectiveness was proven and a significant decrease in the incidence of IMD was observed, for years they were used for protection against strains that were used to construct the vaccines only. Later on, their utility against strains sharing some antigens with vaccine strain was proven, as was shown in Normandy (Caron et al., 2011; Holst et al., 2009; Pannato et al., 2013).

ST-11CC

Meningococci belonging to ST-11CC have had a significant impact on global meningococcal epidemiology and advances in strategies to control and prevent IMD. In contrast to other clonal complexes, ST-11CC isolates have been present among meningococci of several serogroups including B, C, W and Y (http://pubmlst.org/neisseria/, Barroso et al., 2013), although the majority represent MenC. In Europe in 2011 60% of MenC belonged to ST-11CC whereas in Poland in the period 2009–2011 only 11.3% (Skoczynska et al., 2013; Whittaker, 2013). They are well known for their unique epidemic potential. In the mid-1980s and 1990s several local outbreaks as well as an increase in IMD incidence caused by MenC/ST-11CC occurred in some provinces of Canada. It is threatening that at the same time ST-11 widely spread into other countries on all continents (Table I) (Ashton et al., 1991; Gottfredson et al., 2006; Harrison et al., 2010; Jelfs et al., 2000; Kremastinou et al., 1999; Krimova and Musilek, 1995; Miller et al., 2001; Tribe et al., 2002). During the following years a next wave of IMD caused by ST-11 clone in Canada was observed (Tsang et al., 2004; Zhou et al., 2012) and isolates belonging to this CC have become predominant among MenC all over the world causing more numerous outbreaks and clusters i.e. in educational institutions, military barracks, or other crowded, semi-closed places. (Bijlsma et al., 2014; Brehony et al., 2007; Chacon-Cruz et al., 2014; Deghmane et al., 2010; de Lemos et al., 2007; ECDC, 2013; Fazio et al., 2009; Garnier et al., 2011; Simon et al., 2013). Also in Poland between 2006–2009 several outbreaks were recorded as well as an increase of incidence of MenC ST-11CC (Fig. 2) (Grecki and Bienias, 2006; Kadłubowski et al., 2007; Skoczynska et al., 2010; Waśko et al., 2009).

It is necessary to emphasize that infections caused by ST-11CC meningococci of serogroup C are associated with significantly higher CFR and sequelae rates in comparison to isolates of other CCs. This can be due to the fact that ST-11CC isolates more frequently cause septicemia than meningitis and mortality from septicemia is generally higher (Rosenstein et al., 2001). It was also interesting that outbreaks caused by the mentioned clone affected mainly teenagers and young adults (Ashton et al., 1991; Jensen et al., 2003; Krizova and Musilek, 1995; Skoczynska et al., 2013; Smith et al., 2006; Trotter et al., 2002). Because of frequent outbreaks occurrence, significant increase in incidence and higher mortality, massive immunization campaigns were carried out. Initially, available polysaccharide vaccines were widely used, for example in Canada and Czech Republic (De Wals et al., 1996; Kriz et al., 1995). Alarming changes in epidemiology accelerated the development of conjugate vaccines against
MenC (MCC), rapidly introduced for the first time in 1999 in the UK. It is interesting and unique that their introduction was initiated without any evidence of the vaccines’ efficacy (it was extrapolated from polysaccharide vaccines), only with safety and immunogenicity confirmation (Miller et al., 2001). MCC vaccines apart from dramatic decrease of the incidence of MenC IMD in vaccinees, reduced also nasopharyngeal carriage, resulted in desirable herd immunity effect (Campbell et al., 2009; Larrauri et al., 2005; Miller et al., 2001). Consequently, the vaccine was successively introduced into national immunization programmes in some other European countries as well as in Australia, Canada and South America (Halperin et al., 2012; Jafri et al., 2013).

Although ST-11 clone of serogroup C was the cause of many outbreaks and epidemics all over the world, the largest epidemics were caused by another variant of ST-11 meningococci, possessing W polysaccharide capsule. The first two international epidemics took place in 2000 and 2001, and were associated with the Hajj Pilgrimage to Mecca. Asymptomatic carrier pilgrims returned to the countries of their origin and transferred epidemic clone to their relatives/contacts in few continents (Hahné et al., 2002; Mayer et al., 2002; Taha et al., 2000). Later, in 2002, a wave of epidemics was also reported in Burkina Faso (Table I) (Harrison et al., 2009). Currently changes in the distribution of W/ST-11 clone have been observed e.g. after the introduction of a conjugate vaccine against MenA in some African countries like Burkina Faso, where the clone has become predominant (Hossain et al., 2013; MacNeil et al., 2014). Spread and/or a noticeable increase of cases caused by the clone has been noted recently also in Europe, South America and Asia (Barra et al., 2013; Barroso et al., 2013; Ladhani et al., 2014; Yamamoto et al., 2013; Zhou et al., 2013).

Concluding remarks. It is still unknown why some meningococcal clones may persist for decades and are characterized by unusual high virulence or epidemic potential, including sudden, drastic increase of incidence, hyperendemic IMD, and outbreaks/epidemics, whereas others are quickly replaced and disappear. As a consequence, the epidemiological situation of IMD is dynamic and variable worldwide and greatly depends on the emergence and widespread of clones belong-
ing to hyperinvasive clonal complexes as e.g. ST-5CC, ST-11CC, ST-32CC and ST-41/44CC. Their occurrence has serious implications for health policy, often requiring mass immunization campaigns. Paradoxically, alarming situations caused by the mentioned CCs have stimulated the development and introduction of new vaccines, counting OMV vaccines against few epidemic clones, different conjugates against serogroups A, C, W, Y meningococci and recent protein vaccines targeting mostly MenB. Experience gained during mass vaccinations has confirmed that immunoprophylaxis is the best and the most effective means to control IMD. Despite the unquestionable success of vaccination, isolates of hyperinvasive clones constitute a continuous public health threat, because they are constantly circulating and able to modify their antigenic profiles to escape host immune response. Therefore, continuous monitoring of meningococcal isolates including thorough molecular typing is indispensable and fundamental for taking appropriate preventive measures.

Literature

Prevalence of Polyoma BK Virus (BKPyV), Epstein-Barr Virus (EBV) and Human Papilloma Virus (HPV) in Oropharyngeal Cancer

DOROTA POLZ-GRUSZKA
KAMAL MORSHED
ADRIAN JARZYŃSKI
and **MALGORZATA POLZ-DACEWICZ**

1 Department of Virology, Medical University, Lublin, Poland
2 Chair and Department of Otolaryngology and Laryngological Oncology, Medical University Lublin, Poland

Submitted 14 February 2015, revised 11 May 2015, accepted 7 July 2015

Abstract

The aim of this study was to analyze the prevalence of BK virus, Human Papillomavirus and Epstein-Barr virus in oropharyngeal cancer, and to test our hypothesis that BKV/HPV/EBV co-infection plays a role in oropharyngeal squamous cell carcinoma. The correlation between viral infection, OSCC, anatomic location, pre-treatment staging, evidence of metastases to lymph nodes, and grading was also investigated. The examination samples were collected from 62 patients from paraffin tissue blocks. Males (90.3%) with, smoking (83.9%) and alcohol abuse (67.7%) problems prevailed in the studied group. G2 histological type was recognized in 80.6% cases. T4 (77.4%) and N2 (56.5%) traits occurred in the majority of patients. No cases of metastasis were observed (M0 100%). HPV – 24.2%, EBV – 27.4% and BKV 17.7% were detected in the studied samples. We observed co-infection EBV/BKV in 8% of cases, HPV/BKV in 4.8%, and HPV/EBV in 9% cases. Only in two cases co-infection of all three viruses was found.

Key words: BKPyV, Epstein-Barr virus (EBV), Human Papilloma virus (HPV), oral squamous cell carcinoma (OSCC), oropharynx

Introduction

Head and neck cancer is a very important problem in public health worldwide and as well as in Poland. In Poland oral and oropharyngeal cancer constitutes 3.8% cancers among men and 1.3% cancers among women (Didkowska et al., 2013). Squamous cell carcinoma (SCC) constitutes 90% of all cases of cancers localised in the oral cavity and the oropharynx. The etiology of OSCC is considered to be multifactorial. Oncogenic viruses have also been involved in OSCC development (Hillbertz et al., 2012; Scully, 2011; Alibek et al., 2013). The cancerogenicity of HPV in humans was conducted by the International Agency for Research on Cancer (IARC) in 2007 and 2012. It was concluded that there is evidence indicating that HPV 16 can cause oral cancer (IARC, 2007; IARC, 2012). Ten to thirty percent of oral cancers are associated with HPV.

A number of studies also suggest the participation of Epstein-Barr virus (EBV) in oral cancer (Acharya et al., 2014; Kis et al., 2009; Jaloulé et al., 2010; Jaloulé et al., 2012). It is one of the most common viruses in humans (Alipov et al., 2005). EBV was the first human virus to which oncogenic potential was attributed, and it is classified as group 1 carcinogen by the World Health Organization's International Agency for Research on Cancer (IARC, 1997). EBV is correlated with nasopharyngeal and gastric carcinoma, squamous cell carcinoma, Hodgkin’s lymphoma and Burkitt’s lymphoma (Peh et al., 2003; Slots, 2005; Slots et al., 2006; Tiwawech et al., 2008; Perera et al., 2010; Chen, 2011).

The BK Polyomavirus (BKPyV) is a small, non-enveloped, circular double-stranded DNA virus, belonging to the Polyomaviridae family, genus Orthopolyomavirus. The Orthopolyomavirus genus includes the JC virus (JCPyV), BK virus (BKPyV), the Simian virus SV40, Merkel cell polyomavirus (MCPv, MCPyV) and trichodysplasia spinulosa-associated polyomavirus (Benett et al., 2012). All polyomaviruses encode regulatory proteins, named large and small tumor antigens (LT-ag and ST-ag). The LT-ag has oncogenic potential in cell culture and animal models. It is estimated that up to 90% of the general population may be BKV infected, mainly during childhood (between 5 and 10 years of age). The transmission route is not clearly defined; however, the orofecal and respiratory route transmission is most possible as the upper respiratory tissues are more susceptible to infections. Additionally, BKV-induced
nephropathy is a well-known problem among kidney transplant recipients. What is more, the BKV DNA was detected in human brain tumors, in neuroblastoma, in urinary tract tumors, in carcinomas of the uterine cervix, vulva, lips and tongue, and in Kaposi’s sarcoma. (Tognon et al., 2003; Neirynck et al., 2012; Schowalter et al., 2012; Raeesi et al., 2012; Konietzny et al., 2012). The correlation between BKV and metastatic bladder carcinoma among immunosuppressed transplant recipients, and among BKV and prostate and bladder carcinoma was analyzed. It is probably consequence of the kidneys being the main site of BKV latency (Tognon et al., 2003). On the other hand, salivary glands are described as a potential location of the virus as the presence of BKV genetic material was detected in saliva (Jeffers et al., 2009). The BKV virus is detected in the oral cavity, and probably has tropism to squamous cells.

The aim of this study was to analyze the prevalence of BK virus, Human Papillomavirus and Epstein-Barr virus in oropharyngeal cancer, and to test our hypothesis that BKV/HPV/EBV co-infection plays a role in oropharyngeal squamous cell carcinoma.

Experimental

Materials and Methods

The present study comprised a group of 62 patients with a diagnosed and histopathologically confirmed OSCC who were hospitalized between 1995–2005 at the Chair and Department of Otolaryngology and Laryngological Oncology of the Medical University of Lublin, Poland. The patients had not received radiotherapy or chemotherapy before. TNM classification was done according to the criteria of the Union Against Cancer (UICC) (Sobin et al., 2009). Histological grading was performed according to the World Health Organization criteria, which divide tumors into three types: well differentiated (G1), moderately differentiated (G2), and poorly differentiated (G3) (Cardesa et al., 2010).

DNA extraction. DNA was extracted from three, 10-µm thick sections of formalin-fixed and paraffin-embedded tissue. The samples were transferred to Eppendorf tubes after cutting deep into the block. The microtome blade was changed after each time. One milliliter of xylene was added into test-tubes, mixed using pulv-vortexing, and later centrifuged (3 min, 8000 rpm). Then the supernatant was removed. One milliliter of 96% ethanol was added to remove the residual xylene. The samples were vortexed and then centrifuged at 800 rpm for 3 minutes. The supernatant was carefully removed. Opened tubes were incubated at 37°C until residual ethanol evaporated.

DNA measuring. Measurement of DNA concentration was made using spectrophotometry, and β-globin gene was amplified to evaluate the DNA extraction process and the presence of amplification reaction inhibitors.

Detection of BKV. The polymerase chain reaction (PCR) method was used to detect the BK/JC virus in the specimens. With the aim of detecting the genetic material of the BK/JC virus, the primers described for the first time by Arthur et al. (1989) were used (Table I). The oligonucleotides attach to a highly conservative region of early coding T-Ag. Because of a high homology of BKV and JCV genomes (75%), polymers are complimentary to the DNA of both viruses. The described primer pair can therefore be used for detecting both BK and JC viruses. The PCR product sequence is specific for a given virus. Primers amplify a 176 bp fragment of BKV genetic material, and 173 bp fragment of JCV genetic material. The final concentrations of the PCR reaction mixture were as follows: 2.0 mM MgCl₂, 200 µM dNTPs, 0.25 µM of each primer, 0.5 U Hot Start Taq DNA polymerase (Qiagen/Hilden/Germany). Amplification was performed under the following conditions: initial denaturation 94°C 15 min., followed by 40 cycles: 94°C 1 min., 55°C 1 min., 72°C 1 min.; final extension: 72°C 10 min. During each PCR

<table>
<thead>
<tr>
<th>sex</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>6</td>
<td>9.7</td>
</tr>
<tr>
<td>male</td>
<td>56</td>
<td>90.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>age</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–49</td>
<td>12</td>
<td>19.4</td>
</tr>
<tr>
<td>50–59</td>
<td>46</td>
<td>74.2</td>
</tr>
<tr>
<td>60 ≤</td>
<td>4</td>
<td>6.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>place of residence</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>urban</td>
<td>37</td>
<td>59.7</td>
</tr>
<tr>
<td>rural</td>
<td>25</td>
<td>40.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>smoking</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>52</td>
<td>83.9</td>
</tr>
<tr>
<td>no/no answer</td>
<td>10</td>
<td>16.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>alcohol abuse</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>42</td>
<td>67.7</td>
</tr>
<tr>
<td>no/no answer</td>
<td>20</td>
<td>32.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>histology stage G</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>80.6</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>16.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T stage</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>19.4</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>77.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N stage</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>11</td>
<td>17.7</td>
</tr>
<tr>
<td>N1</td>
<td>14</td>
<td>22.6</td>
</tr>
<tr>
<td>N2</td>
<td>35</td>
<td>56.5</td>
</tr>
<tr>
<td>N3</td>
<td>2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M stage</th>
<th>N=62</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>62</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
run, the samples were tested, together with one negative and one positive control. DNA from urine of a kidney transplant patient was used as a positive PCR control to assess the success of amplification (ATCC VR-837). PCR reagents without template DNA served as a negative control. The PCR products were analyzed using electrophoresis in 2% agarose gel.

Detection of EBV. Nested PCR was carried out for detection of EBV DNA (54 bp). The primer sequences are shown in Table II.

All PCR reactions were carried out in the final volume of 25 µl using Taq PCR Core Kit (Qiagen/Hilden/Germany). The concentrations of PCR reaction components were prepared as follows: 2 mM MgCl₂, 0.2 mM dNTPs, 0.2 µM of each forward and reverse primer and 0.5 U of Taq DNA polymerase. During each run, the samples were analyzed together with one negative and positive control. The negative control consisted of nuclease-free water, while the positive control for EBV was EBV-positive cell line, Namalwa, ATCC-CRL-1432. The reaction mixture containing 5 µl of extracted DNA was amplified under the following conditions: 94°C for 3 minutes of initial denaturation, then 35 cycles of 94°C for 30 seconds, 55°C for 40 seconds, 72°C for 1 minute with the final extension at 72°C for 5 minutes. The second round amplification was performed with 1 µl of the first run product in the same conditions. The final PCR products were analyzed on 3% agarose gel.

HPV detection and genotyping. HPV detection and genotyping was performed using the INNO-LiPA HPV Genotyping Extraassay (Innogenetics/Gent/Belgium). The kit is based on the amplification of a 65 bp fragment from the L1 region of the HPV genome with SPF10 primer set. PCR products are subsequently typed with the reverse hybridization assay. PCR products are subsequently typed with the reverse hybridization assay. This kit identifies 28 HPV genotypes: HPV 6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 43, 44, 45, 52, 53, 54, 56, 58, 59, 66, 68, 69, 70, 71, 73, 74, and 82.

Statistical analysis. Statistical analysis was performed to investigate the relationship between EBV and HPV presence and clinical and demographical characteristics of patients were determined by means of Pearson’s chi-square test and with Kruskal-Wallis test for small groups. Statistical significance was defined as p < 0.05.

This research was approved by the Ethics Committee and is in accordance with the GCP regulations (no. KE-0254/133/2013).

Results

Males (90.3%) with, smoking (83.9%) and alcohol abuse (67.7%) problems prevailed in the studied group. G2 histological type was recognized in 80.6% of cases. T4 (77.4%) and N2 (56.5%) traits occurred in the majority of patients. No cases of metastasis were observed (M0 100%). Characteristics of patients with oropharyngeal carcinoma are shown in Table I.

In the studied samples HPV was detected in 27.4%, EBV in 29%, and BKV in 17.7%. We observed co-infection EBV/BKV in 8% of cases, HPV/BKV in 4.8%, and HPV/EBV in 9.7%. Only in two cases co-infection all three viruses was detected. The presence of JCPyV was observed in none of the studied samples. There isn’t statistical significance between HPV, EBV, BKV infection and sex, age, place of residence, tobacco smoking, alcohol use, G, T, N features. Detailed results are shown in Table III.

Discussion

Literature on the role of HPV virus, and especially HPV 16 in oral squamous cell carcinoma is abundant (Syrjanen et al., 1983; Szostek et al., 2009; Jalouli et al., 2010; Jalouli et al., 2012; Syrjanen and Syrjanen, 2013; Metgud et al., 2014; Sand and Jalouli, 2014; Sathish et al., 2014). The frequency of HPV occurrence varies in different populations and is dependent on the kind of the clinical material and the applied research methods. According to the available data, the prevalence of HPV in squamous cell carcinoma of the oral cavity.

Table II

<table>
<thead>
<tr>
<th>Virus</th>
<th>Primer sequences</th>
<th>Product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKPyV</td>
<td>PEP-1 (5’-AGTCTTTAGGGTCTTCTACC-3’)</td>
<td>176 bp</td>
</tr>
<tr>
<td></td>
<td>PEP-2 (5’-GGTGCCAACCTATGGAACAG-3’)</td>
<td></td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td>Outer 5’-GTC ATC TAC GGG GAC ACG GA-3’</td>
<td>54 bp</td>
</tr>
<tr>
<td></td>
<td>Inner 5’-ACC CGG AGG CTG TTT GTG GGC GC-3’</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5’-GGA GAA GGT CTT CTC TGC CTC-3’</td>
<td></td>
</tr>
</tbody>
</table>

The primer sequences used for the studied viruses.
and oropharynx varies and ranges from 8% to 74% (Castro and Busolotti, 2006; Ritchie et al., 2003; Sathish et al., 2014). In the present study, HPV DNA was detected in formalin-fixed and paraffin-embedded tissue in 24.2% cases. In our earlier studies from fresh frozen tissue, HPV was detected in 32.5% (HPV 16 composed 22.5%) (Polz-Gruszka et al., 2015). The presence of EBV was found in 27.4% of the studied patients. The role of EBV virus in OSCC was first observed by zur Hausen (1976), while in Poland by Szkaradkiewicz et al. (2002). Other authors also emphasize the role of EBV in the development of OSCC (Kis et al., 2009; Jaloluli et al., 2010; Jaloluli et al., 2011; Senyuta et al., 2013). Jaloluli et al. (2012) detected the presence of EBV in 54% of the studied patients. The role of EBV virus in OSCC was first observed by zur Hausen (1976), while in Poland by Szkaradkiewicz et al. (2002). Other authors also emphasize the role of EBV in the development of OSCC (Kis et al., 2009; Jaloluli et al., 2010; Jaloluli et al., 2011; Senyuta et al., 2013). Jaloluli et al. (2012) detected the presence of EBV in 55% of samples from 8 different countries. A number of studies point to the co-infection by HPV and EBV in cervix cancer (Szkaradkiewicz et al., 2004) and in oral squamous cell carcinoma (Al Mustafa et al., 2009; Achayra et al., 2014; Jiang et al., 2015). Several articles indicate that co-infection by multiple oncogenic viruses may be an important risk factor in the development of OSCC (Jaloluli et al., 2011; Achayra et al., 2014; Jiang et al., 2014; Sand et al., 2014). Al Mustafa et al. (2009) showed that high-risk HPV and EBV co-infections play an important role in initiating neoplastic transformation of human oral epithelial cells.

In our study co-infection HPV/EBV was identified in 9.7%. Jiang et al. (2014) suggest that co-infected cells can have a higher tumorigenic potential than normal cells.

BKV DNA was also detected (17.7%) in the studied material from oropharyngal cancer. In our earlier studies of the clinical material from oral cavity carcinoma BKV DNA was detected in 18.5% cases (Polz et al., 2015). Recent data suggested a correlation between BK virus and various types of human cancers, Kaposi’s sarcoma, brain tumors, and tumors of the urinary tract (Hachana et al., 2012). The role of BKV in oral squamous cell carcinoma is controversial. What is more, BKV DNA presence was confirmed in high-grade squamous intraepithelial cervical lesions (precancerous lesions) (Comar et al., 2011). Some authors suggest that BK virus may be a potential co-factor for HPV in the development of cervical neoplasia (Fraase et al., 2011), especially together with the HPV genotype 16 (Comar et al., 2011). Burger-Calderon et al. (2014) suggest a connection between BKPyV and the oral compartment. BKV DNA was detected in tonsilar biopsy specimens and nasopharyngeal aspirates. Besides, Moens et al. (2014) suggest that polyomaviruses, including those induced by other oncogenic viruses, may be a co-factor in the development of cancer. In our studies HPV/BKV co-infection was detected in 4.8% cases, while

<table>
<thead>
<tr>
<th>Table III</th>
<th>Correlation between HPV, EBV, BKV and epidemiological and histological grades and TN classification.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPV + (N = 17)</td>
</tr>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>sex</td>
<td>female</td>
</tr>
<tr>
<td></td>
<td>male</td>
</tr>
<tr>
<td>age</td>
<td>40–49</td>
</tr>
<tr>
<td></td>
<td>50–59</td>
</tr>
<tr>
<td></td>
<td>60 ≤</td>
</tr>
<tr>
<td>place of residence</td>
<td>urban</td>
</tr>
<tr>
<td></td>
<td>rural</td>
</tr>
<tr>
<td>smoking</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no/no answer</td>
</tr>
<tr>
<td>alcohol</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no/no answer</td>
</tr>
<tr>
<td>G</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td>G2</td>
</tr>
<tr>
<td></td>
<td>G3</td>
</tr>
<tr>
<td>T</td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>T4</td>
</tr>
<tr>
<td>N</td>
<td>N0</td>
</tr>
<tr>
<td></td>
<td>N1</td>
</tr>
<tr>
<td></td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td>N3</td>
</tr>
</tbody>
</table>
EBV/BKV in 8%. In the light of our research results and the opinions of other researchers, we cannot exclude the role of BKV in oral SCC, taking into account the fact that the genetic material of BKV was detected in saliva (Jeffers et al., 2009). Double or mixed infection with other oncogenic viruses may induce transformation. The question remains open whether BKPyV play a role in oral squamous cell carcinoma or it is a co-factor for cancers induced by other oncoviruses. It is well-known that chronic infection affects the immunological response of the host. Primary infection with a nononcogenic virus may promote superinfection with oncogenic virus capable of neoplastic transformation. The oncogenic potential of HPV is related to the expression of E6 and E7, whereas the oncogenic potential of EBV – to the expression of LMP-1 and LMP-2 and of BKV-LTag. Toll-like receptors (TLRs) play a critical role in the early innate immune response to invading pathogens by sensing microorganism and they are involved in sensing endogenous danger signals. LTag of virus BKPyV as well as the protein of LMP-1 of virus EBV lowers the expression of TLR9, which can favour the aforementioned superinfection (Moens et al., 2014). According to Siennicka et al. (2013), TLRs simulation with microbial ligands influences EBV replication.

These observations provide insights for future studies of EBV and BKPyV pathogenesis and the association with oral squamous cell carcinoma. Future studies on the mechanisms of co-infection and/or superinfection and their role in oral squamous cell carcinoma are necessary. The knowledge about these viruses may provide targets for therapy and for diagnostic methods.

Acknowledgements
This study was supported by a Research Grant from the Medical University, Lublin, Poland (DS 233). We are thankful to prof. Wiesław Gołąbek (Chair and Department of Otolaryngology and Laryngological Oncology in Lublin 1998–2010) for his help in clinical material collection.

Literature

Biodecolorization and Bioremediation of Denim Industrial Wastewater by Adapted Bacterial Consortium Immobilized on Inert Polyurethane Foam (PUF) Matrix: A First Approach with Biobarrier Model

R. RAJENDRAN¹, P. PRABHAVATHI¹*, S. KARTHIKSUNDARAM¹, S. PATTABI¹, S. DINESH KUMAR³ and P. SANTHANAM³

¹PG and Research Department of Microbiology, P. S. G. College of Arts and Science, Coimbatore, Tamil Nadu, India
²PG and Research Department of Environmental Science, P. S. G. College of Arts and Science, Coimbatore, Tamil Nadu, India
³Marine Planktonology and Aquaculture Lab., Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India

Submitted 23 November 2013, revised 5 September 2014, accepted 27 February 2015

Abstract

The present experiments were studied on bioremediation of denim industry wastewater by using polyurethane foam (PU foam) immobilized bacterial cells. About 30 indigenous adapted bacterial strains were isolated from denim textile effluent out of which only four isolates were found to be efficient against crude indigo carmine degradation using broth decolorization method. The selected bacterial strains were identified as Actinomyces sp., (PK07), Pseudomonas sp., (PK18), Stenotrophomonas sp., (PK23) and Staphylococcus sp., (PK28) based on microscopic and biochemical characteristics. The bacterial immobilized cells have the highest number of viable cells (PK07, PK18, PK23 and PK28 appeared to be 1 × 10⁸, 1 × 10⁹, 1 × 10⁶ and 1 × 10⁷ CFU/ml respectively) and maximum attachment efficiency of 92% on PU foam. The complete degradation using a consortium of PU foam immobilized cells was achieved at pH 6, 27°C, 100% of substrate concentration and allowed to develop biofilm for one day (1.5% W/V). In SEM analysis, it was found that immobilization of bacterial cells using PUF stably maintained the production of various extracellular enzymes at levels higher than achieved with suspended forms. Finally, isatin and anthranilic acid were found to be degradation products by NMR and TLC. The decolorized dye was not toxic to monkey kidney cell (HBL 100) at a concentration of 50 µl and 95% of cell viability was retained. A mathematical model that describes bacterial transport with biodegradation involves a set of coupled reaction equations with non-standard numerical approach based on the time step scheme.

Keywords: biobarrier model, biofilm, bioremediation, cytotoxicity test, polyurethane foam, secondary metabolites

Introduction

The textile industry involves a wide range of raw materials, machineries and processes to engineer the required shape and properties of the final products. Indigo dyes are used by a wide number of industries and textile mills predominantly use them. Today denim is the basis of the Indian fashion industry in many cases. It is a challenging dye to use because of its insoluble nature in water; to be dissolved, it must undergo a chemical change under high alkaline condition. When a submerged fabric is removed from the dyebath, the indigo quickly combines with oxygen in the air and reverts to its insoluble form producing color on the fabric (Ciardelli et al., 2001; Bes-Pia et al., 2004). This textile chain begins with the production of raw fiber continues with pretreatment, dyeing, finishing, printing, coating, and other processes. Among these processes, dyeing and finishing are major water consuming processes that generate highly polluted effluents.

The dyeing step in the textile production has the largest risk on the environment due to high concentrations of organic dyes, additives and salts used. Therefore, among the processes applied in the textile industry, dyeing process wastewater should be dealt with seriously. The districts Coimbatore, Tirupur and Karur are largely polluted (Ranganathan et al., 2007) with discharged toxic wastes from dyeing and bleaching units. The problem of disposal of textile wastes is likely to become serious in the days ahead and there is possibility of affecting the groundwater in the study area. Most of the time, this process constitutes the major part

* Corresponding author: P. Prabhavathi, PG and Research Department of Microbiology, PSG College of Arts and Science, Coimbatore, Tamil Nadu, India; e-mail: prabha_micro2007@yahoo.co.in
of the water consumption and generates wastewaters distinguished by high chemical oxygen demand (COD), high dissolved and suspended solids, and high color contents (Azbar and Tonar, 2004; Chan et al., 2008). Many of the conventional and even advanced treatment technologies suffer the limitation of not being able to treat highly colored wastewaters from textile manufacturing units (Vandevivere et al., 1998). One of the main drawbacks of these treatments is their high energy costs and low efficiency in degrading the dye stuffs. In some studies on membrane treatment of denim textile mill effluents for reuse, the wastewater is directly filtered after a pretreatment to remove only coarse particles to reduce membrane fouling and this problem has not yet been solved (Chatcarchee, 2011). An alternative method of sludge management involves use of microorganisms for in situ degradation in the soil. It has been successfully applied for cleanup of soil, surface water, groundwater, sediments and ecosystem restoration (Prasad, 2011). It has been unequivocally demonstrated that a number of xenobiotics can be cleaned up through bioremediation.

Biofilms can be composed of either single or multiple species. It provides the benefit of a stable environment for the enclosed microbes, which makes them such a prolific and widespread phenomenon in nature. The aim of the present study was the screening of potent adapted bacterial strains from the denim effluent sample. These strains were allowed to form a biofilm on an inert substrate like the polyurethane foam and retain their ability to efficiently degrade H-chromophore of Indigo dye in several optimum conditions and to check their efficiency on an industrial scale.

Experimental

Materials and Methods

Sample collection. The textile effluent sample contaminated with crude indigo dye was collected from the outlet of denim industry dyeing unit (indigo dye) in Perundurai KG Fabrics, Coimbatore. The sample was brought to laboratory and stored at 7°C and used for further process.

Isolation, screening and identification of adapted bacterial strains from denim textile effluent. The dilution plates after incubation showed zone of clearance around number of colonies. Among this only 30 predominant cultures were isolated. The zone of clearance was due to the dye degrading ability of the isolated organisms. A zone of clearance was observed after 24 hrs in the nutrient agar plate (0.5% peptone, 0.3% yeast extract, 1.5% agar and 0.5% NaCl) containing 0.1% dye. The plates were incubated at 37°C as for 24 hours. The cultures which showed a zone of clearance around their colonies were isolated and used for further screening on nutrient broth (0.5% peptone, 0.3% yeast extract and 0.5% NaCl) (Rajendran et al., 2011) amended with 0.1% of indigo carmine separately for the quantitative estimation of decolorization. The decolorization pattern was calculated by using formula i.e. (Initial OD-Final OD)/ Initial OD X 100. After incubation the tubes were centrifuged and the dye decolorization was measured spectrophotometrically at 610 nm. The selected bacterial strains (PK07, PK18, PK23 and PK28) were examined for their shape, gram staining and motility. The biochemical tests were performed according to Bergey’s manual of systemic bacteriology (Holt et al., 1994). The selected bacterial stains were identified though 16S rRNA which was carried out at Chromous Biotech Pvt Ltd, Bangalore, India.

Characterization of untreated denim industrial effluent. The raw effluent was characterized by measuring the values of 11 different physico-chemical parameters. These parameters (Total Dissolved Solids (TDS) (mg/l), Total Solids (TS) (mg/l), Chemical Oxygen Demand (COD) (mg/l), pH, color, turbidity (NTU), hardness (mg/l), conductivity (mS), resistivity (Ω) and alkalinity (mg/l)) were chosen in accordance with the regulations of Tamil Nadu Pollution Control Board. All the above mentioned physico-chemical analyses were done immediately after the effluent sample was collected (APHA, 1992).

Toxicity Test for Polyurethane foam (PUF): About 0.1 ml of 3-day old liquid nutrient broth cultures were individually spread over on nutrient agar plate (Jerabkova et al., 1997). The PUF of each density was cut into slices of about 1 x 1 cm and the plates without PUF were used as a control. The plates were incubated at 37°C for 2 days. The area around and in contact with the PUF cubes were observed for bacterial growth.

Enumeration of viable cells immobilized on polyurethane foam: Polyurethane foam cubes were weighed and placed into a 100 ml of conical flask containing 20 ml of nutrient broth and autoclaved at 121°C for 15 min, 2 ml of 3 day old cultures were then inoculated separately into each flask. The cultures were incubated at 30°C with orbital shaking (120 rpm) for ten days. Enumeration of viable cells was carried out 2, 4, 6, 8 and 10 days after incubation. To ensure that only the immobilized cells were further quantified, the PUF was first rinsed with sterile nutrient broth. It was torn into pieces using sterile forceps and then suspended in nutrient broth and vortexed to dislodge the immobilized cells. About 0.1 ml aliquots were spread onto nutrient agar plate and incubated at 37°C until colonies appeared. The experiment was repeated four to five times. The attachment efficiency (AE) was calculated as the fraction of the total viable cells that was immobilized (Jerabkova et al., 1997).
Comparison of treatment trails on Bioremediation of DENIM industry wastewater by pure broth culture, alginate immobilized cells and PU foam immobilized cells. Using broth cultures: To 95 ml of the effluent sample, 5 ml of individual strains and consortium (combination of four bacterial strains) were inoculated. After inoculation the samples were incubated in a metabolic shaker for 24 hours at room temperature for a period of 5 days. Samples were retrieved from the flasks after 5 days of incubation and the bioremediation efficiency of the individual cultures as well as that of the consortium were studied as described above.

Using Ca-alginate immobilized cells: The Ca-alginate entrapment of bacterial cells was performed as per the method described by Pierstan and Coughlan (1985). The three gram of beads was measured and it was added to 97 ml of denim textile effluent. This was incubated at room temperature in a metabolic shaker at 120 rpm for 5 days. Sample without inoculation was also used as a control. The treated effluent samples were retrieved and studied as described above.

Using PU foam cells: The polyurethane foam was sterilized using water at 100°C for 20 minutes and the excess water was drained off after sterilization. The pure bacterial broth cultures were added in such a way that the foam was immersed in the broth. Cultures were incubated for 24 hours at room temperature in a metabolic shaker for the biofilm to develop in the matrix of the polyurethane foam. After incubation the excess of nutrient broth was drained off and added 100 ml of denim industry wastewater. The samples were incubated in a metabolic shaker for 24 hours at room temperature for a period of 5 days. The treated effluent samples were retrieved and studied as described above.

Optimization of cultural conditions for maximum biodegradation ability (APHA, 1992). The efficient adapted bacterial consortium (four) immobilized on polyurethane foam was selected and optimized under different parameters such as retention time (on 3rd day), pH (5, 6, 7, 8 and 9), temperature (7°C, 17°C, 27°C and 37°C), initial organic load concentration (20%, 40%, 60%, 80%, and 100%), inert substrate concentration (0.5%, 1%, 1.5%, 2% and 2.5% W/V) were used for the biofilm formation and its efficiency in biodegradation and also the decolorization.

Treatment trails of denim effluent under optimized cultural conditions: About 1.5% W/V of the foam was taken and allowed to develop biofilm for one day. A substrate concentration of 40% was added and incubated at 27°C for 3 days. The pH of the effluent was adjusted to pH 6.

Characterization of Indigo Dye Degrading Compounds Through GCMS. GC-MS is particularly useful for identification of products from disperse vat dyes. Treated and untreated effluents were centrifuged. Equal volumes of the supernatant collected were mixed with diethyl ether separately in order to retrieve the organic content of the treated and untreated effluent samples. The organic layer was then collected and allowed to evaporate at room temperature. The residue that remains was then suspended in 5 ml 100% methanol. The methanol solution was then used for GC-MS analysis for both the treated and untreated effluent samples separately. GC-MS was performed using a THERMO GC-TRACE ULTRA VER: 5.0, THERMO MS DSQ II (version 1.10 beta, Shimadzu) (Adosinda et al., 2003).

Biodecolorization and degradation of Indigo dye using various analytical methods. In order to uncover the possible mechanism of indigo dye decolorization and to identify the metabolites generated from indigo dye after bacterial treatment, various analytical techniques were used. The thin layer chromatography (TLC) (Campos et al., 2001) and nuclear magnetic resonance spectroscopy (NMR) (Ramya et al., 2008) have been proved to be ideal methods with the quantification of secondary metabolites from treated indigo dye. Biofilm developed on polyurethane foam was taken and air dried and SEM analysis was done. HBL 100 cells (28-homo-brassinolide/Breast cancer cell line) were purchased from National Centre for Cell Science (Pune, India) and maintained in DMEM and McCoy’s medium, supplemented with non-essential amino acids. Cells were cultured at 37°C in a humidified atmosphere containing 5% CO₂ in a CO₂ incubator. Cells were cultured and ~1 × 10⁶ cells/wells were seeded into 96 well tissue culture plates and incubated for 48 h. HBL 100 cells were treated with 50 µL concentration of processed indigo dye and crude indigo dye.
Results and Discussion

Isolation, screening and identification of adapted bacterial strains. The indigo carmine dye containing plates after incubation showed zone of clearance around number of colonies. Among these only 30 bacterial colonies which showed a zone of clearance only 4 bacterial isolates were effective in the degradation of indigo carmine by showing a reduction pattern of more than 60%. These microorganisms (PK07, PK18, PK23 and PK28) were capable of degrading the pie bond which in turn reduced the H– chromophore of the indigo carmine dye without any biosorption characters. A majority of the bacterial strains which were primarily selected from the solid media showed biosorption characteristics in broth assay.

The UV-visible spectrophotometer showed different absorbance values for the media incubated with the 30 bacterial isolates. This variation for each culture depends on the metabolites produced by them and the ability of those metabolites to react with the dye compound and converting them into their secondary derivatives. The absorbency was measured at 610 nm (Rajendran et al., 2011). From the morphological and biochemical results, all the selected adapted bacterial isolates were again identified on the basis of 16S rRNA gene sequence. Based on the sequence alignment on BLAST revealed the isolate belongs to Actinomycetes sp. (PK07), Pseudomonas aeruginosa (PK18), Stenotrophomonas rhizophila (PK23) and Staphylococcus pasteuri (PK28) with 77%, 92%, 99% and 86% sequence similarities respectively. Similar work (Balan and Monteiro, 2001) was proved among many indigo carmine degrading microorganisms and the predominant cultures.

Comparison of treatment trails on bioremediation of denim industry wastewater by pure broth culture, alginate immobilized cells and PU foam immobilized cells. The treated effluent samples of broth cultures were checked for their bioremediation ability after 5 days of incubation. A maximum percentage of reduction was seen in consortia and their reduction percentages were COD – 61.7%, Colour – 75.38%, TS – 60.10%, TSS – 79%, TDS – 73.2%, Turbidity – 42.3%, Hardness – 63.04%, Conductivity – 14%, Resistivity – 29.3%, Salinity – 11.9%, pH – 12.2%. Mixed bacterial cultures from a wide variety of habitats have shown to decolorize the diazolinked chromophore of dye molecules in 15 days (Knapp and Newby, 1995). A specific bacterium Pseudomonas putida was chosen to utilize the aromatic structures.

A maximum reduction percentage was seen in bacterial consortia (Ca-alginate) and their reduction pattern were, COD – 77.3%, Colour – 78.1%, TS – 47.5%, TSS – 47.02%, TDS – 34.9%, Turbidity – 69.5%, Hardness – 54.3%, Conductivity – 5.14%, Resistivity – 45.63%, Salinity – 12.9%, pH – 11.08%. On comparing, other two treatment trials (PUF immobilized cells and free cells) were suitable for the bacterial biomass production as well as increasing the bioremediation efficiency. Therefore, it can be concluded that the entrapment technique is not suitable for the immobilization of mixed bacterial consortia because of surrounding environmental conditions (Trevors et al., 1992).

A maximum percentage of reduction was seen in consortia and their reduction percentages were COD – 88.3%, Colour – 93.1%, TS – 84.5%, TSS – 50.8%, TDS – 60.9%, Turbidity – 66.7%, Hardness – 76.9%, Conductivity – 5.1%, Resistivity – 29.3%, Salinity – 11.9%, pH – 12.2%. The storage stability and microbial activity of
encapsulated cells in PUF are better than those of cells encapsulated in Ca-alginate beads as well as pure broth culture. Similar works (Kim et al., 2002; Forgas et al., 2004) have explained the efficiency of decolorization and biodegradation enhanced by the absorption of the dye on the biomass.

Optimization of cultural conditions for maximum biodegradation ability.

Effect of retention time. A reduction was observed for the selected bacterial combination immobilized on polyurethane foam from the first day onwards till 7 days. A significant reduction was seen in third day of incubation. The reduction percentages were shown in Table I. This was similar to the work (Kim et al., 2002) has explained, a decrease of COD removal efficiency by 20% was observed in fourth day due to the sloughing of biofilm in the fixed film bioreactor.

Effect of inert substrate concentration (PUF). A maximum reduction was seen in the foam quantity of 1.5%W/V. The maximum percentage of reduction for all the parameters was shown in Table IIb. Zaiat et al. (2000) developed a new reactor configuration, the horizontal-flow anaerobic immobilized-biomass (HAIB) reactor utilizing polyurethane foam matrices for biomass immobilization.

Effect of initial pH. A percentage of reductions of all the parameters are shown in Table IIa. A reduction was observed in third day due to the low alkaline or highly acidic pH is not suitable for the indigenous organisms present in polluted water. Highly alkaline or highly acidic pH is not suitable for the indigenous organisms present in the effluent.

Effect of incubation temperature. An efficient reduction was observed at 27°C (Table IIIa). The optimal temperature for bacteria ranges from 20°C to 37°C. The metabolic activities will be higher only at this range. Thus maximum degradation was seen in 27°C. In the similar experiments (Khlifi et al., 2010) were conducted at different temperatures, 20°C, 25°C, 30°C, 35°C. The maximum degradation of waste water was found at 30°C.

Effect of initial substrate concentration. When different concentration of effluent samples were supplemented for the consortium, an efficient reduction was observed at 40% of the effluent sample (Table IIIb). From the results, a significant reduction occurred in diluted organic load rather than direct effluent. This was because at very low concentrations the quantity of organic content will be low. Similar results were observed in the work of Khlifi et al. (2010) where optimal decolorization occurred with 20% effluent at pH 5.

Effect of incubation time for biofilm development. When biofilm was allowed to develop over increased period of incubation time (1 day up to 5 days), biofilm developed on first day of incubation was found to be more efficient in the bioremediation of effluent (Table IV). When cultures were grown as biofilm the growth rate will be faster due to matrix formation and maintain a stable log phase.

Treatment trails of denim effluent under optimized cultural conditions. The maximum degradation under all the above optimized conditions were found to be TS – 41%, TSS – 75%, Turbidity – 42%, Color – 86%, COD – 89%, pH – 21%, Conductivity – 38%, TDS – 64%, Salinity – 30%, Hardness – 54% and Resistivity – 38%.

GC-MS analysis. The compounds present for the respective peaks were 1,2-benzene dicarboxylic acid, bis (2-ethylexyl) ester, Hexadecane-2-methyl, Hexadecane-2,6,10,14-tetramethyl, octacosone. The compounds

<table>
<thead>
<tr>
<th>Table I</th>
<th>Effect of retention time on bioremediation of denim industrial effluent (Mean and Standard deviation, n = 3).</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total Solids</td>
<td>39.45 ± 0.92</td>
</tr>
<tr>
<td>TSS</td>
<td>40.89 ± 0.50</td>
</tr>
<tr>
<td>Turbidity</td>
<td>17.93 ± 0.40</td>
</tr>
<tr>
<td>Color</td>
<td>45.13 ± 0.51</td>
</tr>
<tr>
<td>COD</td>
<td>50.58 ± 0.65</td>
</tr>
<tr>
<td>pH</td>
<td>5.11 ± 0.24</td>
</tr>
<tr>
<td>Conductivity</td>
<td>41.25 ± 1.00</td>
</tr>
<tr>
<td>TDS</td>
<td>16.60 ± 0.61</td>
</tr>
<tr>
<td>Salinity</td>
<td>15.92 ± 0.30</td>
</tr>
<tr>
<td>Hardness</td>
<td>38.05 ± 0.50</td>
</tr>
<tr>
<td>Resistivity</td>
<td>22.93 ± 0.40</td>
</tr>
</tbody>
</table>

Note: TSS – Total Suspended Solids; COD – Chemical Oxygen Demand; TDS – Total Dissolved Solids
Table II

Effect of inert PUF concentration (a) and initial pH (b) on bioremediation of denim industrial effluent (Mean and Standard deviation, n = 3).

<table>
<thead>
<tr>
<th>PUF Concentration (g/ml)</th>
<th>pH</th>
<th>TSS</th>
<th>TDS</th>
<th>Color</th>
<th>COD</th>
<th>pH</th>
<th>Conductivity</th>
<th>Salinity</th>
<th>Hardness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>5.91 ± 0.88</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
<tr>
<td>1</td>
<td>4.93 ± 0.75</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
<tr>
<td>2.5</td>
<td>4.93 ± 0.75</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
<tr>
<td>5</td>
<td>4.93 ± 0.75</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
<tr>
<td>7</td>
<td>4.93 ± 0.75</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
</tbody>
</table>

Note: TSS – Total Suspended Solids; COD – Chemical Oxygen Demand; TDS – Total Dissolved Solids.

Table III

Effect of temperature (a) and initial substrate concentration (b) on bioremediation of denim industrial effluent (Mean and Standard deviation, n = 3).

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Substrate Concentration (g)</th>
<th>TSS</th>
<th>TDS</th>
<th>Color</th>
<th>COD</th>
<th>pH</th>
<th>Conductivity</th>
<th>Salinity</th>
<th>Hardness</th>
<th>Resistivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.91 ± 0.88</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
<tr>
<td>0.8</td>
<td>5.91 ± 0.88</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
<tr>
<td>0.6</td>
<td>5.91 ± 0.88</td>
<td>49.62 ± 0.68</td>
<td>51.18 ± 1.03</td>
<td>45.47 ± 0.92</td>
<td>39.61 ± 0.58</td>
<td>39.61 ± 0.68</td>
<td>38.61 ± 0.68</td>
<td>46.47 ± 1.17</td>
<td>39.07 ± 0.63</td>
<td>51.18 ± 1.03</td>
</tr>
</tbody>
</table>

Note: TSS – Total Suspended Solids; COD – Chemical Oxygen Demand; TDS – Total Dissolved Solids.
Bioremediation of denim industry wastewater by immobilized bacterial cells

Effect of biofilm optimization on bioremediation of denim industrial effluent (Mean and Standard deviation, n = 3).

<table>
<thead>
<tr>
<th>Effect of biofilm optimization (days)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>34.38 ± 0.407</td>
<td>22.84 ± 1.50</td>
<td>21.10 ± 1.39</td>
<td>19.42 ± 0.89</td>
<td>18.30 ± 0.65</td>
</tr>
<tr>
<td>TSS</td>
<td>23.06 ± 0.12</td>
<td>20.07 ± 1.88</td>
<td>13.53 ± 1.13</td>
<td>13.54 ± 0.50</td>
<td>15.20 ± 0.64</td>
</tr>
<tr>
<td>Turbidity</td>
<td>34.79 ± 0.20</td>
<td>28.92 ± 1.54</td>
<td>31.42 ± 1.09</td>
<td>24.43 ± 0.81</td>
<td>23.06 ± 0.89</td>
</tr>
<tr>
<td>Color</td>
<td>65.37 ± 0.23</td>
<td>62.17 ± 0.81</td>
<td>56.19 ± 0.70</td>
<td>51.32 ± 0.92</td>
<td>49.74 ± 1.39</td>
</tr>
<tr>
<td>COD</td>
<td>43.27 ± 0.28</td>
<td>25.48 ± 0.91</td>
<td>35.58 ± 0.89</td>
<td>30.46 ± 0.74</td>
<td>31.74 ± 1.25</td>
</tr>
<tr>
<td>pH</td>
<td>12.23 ± 0.27</td>
<td>12.49 ± 0.73</td>
<td>24.31 ± 0.91</td>
<td>19.26 ± 0.79</td>
<td>16.33 ± 1.30</td>
</tr>
<tr>
<td>Conductivity</td>
<td>14.45 ± 0.17</td>
<td>22.00 ± 1.39</td>
<td>13.33 ± 0.84</td>
<td>26.25 ± 0.86</td>
<td>24.79 ± 1.48</td>
</tr>
<tr>
<td>TDS</td>
<td>46.53 ± 0.33</td>
<td>44.54 ± 0.88</td>
<td>38.33 ± 0.85</td>
<td>29.46 ± 0.76</td>
<td>31.34 ± 1.36</td>
</tr>
<tr>
<td>Salinity</td>
<td>50.22 ± 0.08</td>
<td>50.48 ± 1.03</td>
<td>44.31 ± 0.81</td>
<td>37.45 ± 2.07</td>
<td>35.26 ± 1.01</td>
</tr>
<tr>
<td>Hardness</td>
<td>35.28 ± 0.24</td>
<td>25.58 ± 0.85</td>
<td>26.73 ± 1.15</td>
<td>25.33 ± 0.52</td>
<td>24.51 ± 0.64</td>
</tr>
<tr>
<td>Resistivity</td>
<td>49.19 ± 0.15</td>
<td>36.07 ± 1.48</td>
<td>41.43 ± 1.00</td>
<td>33.48 ± 0.74</td>
<td>32.97 ± 0.05</td>
</tr>
</tbody>
</table>

Note: TSS – Total Suspended Solids; COD – Chemical Oxygen Demand; TDS – Total Dissolved Solid

Biodecolorization and degradation of Indigo dye using various analytical methods.

'H'-NMR analysis. The 'H'-NMR spectrum of the Indigo dye showed two singlets in the downfield and aromatic proton at 7.6 δ and corresponding to NH and two doublets at 6.9 δ and 6.8 δ, which accounts for the presence of two adjacent protons on the aromatic ring. The overall spectrum clearly depicts the structure of Indigo dye. On the other hand, the Indigo dye which has undergone effective degradation was recorded by spectrum. The end product isatin exhibited three singlets at 7.5 δ, 6.9 δ and 6.8 δ which reveal the presence of the proton of SO$_3$H group an aromatic proton (Ramya et al., 2008).

Morphological studies of immobilized bacterial cells on PUF by scanning electron microscope (SEM). The PU foam substrates used were having highly flexible and porous surface providing large surface area for immobilizing adapted bacterial cells for biofilm formation. The bacterial biofilm consisted of heterogeneous population of short and long rods, cocci and filaments. Rile et al. (1999) has observed the majority of F92 cells were immobilized on the outer surfaces of PUF in SEM.

Thin layer chromatography. The indigo dye is used as a unique source of carbon and nitrogen available to adapted bacterial consortium in this assay, it indicates the possibility that indigo undergoes a biodegradation process. The degradation was demonstrated by thin layer chromatography of treated indigo dye extract, it is observed that the control dye has slight mobility and one known metabolite i.e. Rf = 0.2 which indicates the presence of isatin which has been detected in the extracts where indigo was present. Very few reports are available on the biodegradation products of indigo dyes. The degradation of indigo by laccases produces isatin (indole-2,3-dione), it is further degraded to anthranilic acid (2-aminobenzoic acid) and is observed through HPL analysis (Campos et al., 2001).

Cytotoxicity test. The adapted mixed bacterial secondary metabolites which were released into the treated medium during biodegradation were not cytotoxic and the cells died as a result of the toxicity of indigo dye. However the decolorized indigo dye was nontoxic to the cells at a concentration of 50 µl in 48 hours while the crude indigo dye killed over 98% of the cells. It is evident from that the percent viability of HBL 100 cells was not drastically affected when the tissue was stored at 37°C up to 3 days. Labib et al. (2012) reported a case of fatal poisoning in a 3-year-old child after administration of indigo for therapeutic purposes (diarrhea, vomiting and fever).

Adsorption isotherms. In Langmuir plots for adsorption, the linear plots of C$_e$/q$_e$ vs C$_e$ confirm that the adsorption follows the Langmuir isotherm model. Langmuir constants, Q$_o$ and b were determined from the slope and intercept of the respective plots. From the Q$_o$ and b values it could be depicted that PU foam immobilized bacterial cells was efficient in adsorbing the dyes. The Q$_o$ and b values of indigo dye containing denim wastewater adsorption by PU foam immobilized cells were 20.4 and 140.74 mg/g, respectively. There was a wide difference in adsorption capacities between...
bacterial biomasses studied, in particular with indigo dye adsorption. The Freundlich equation is used for heterogeneous surface energies in which the energy term, Q_o, in the Langmuir equation varies as a function of the surface coverage, q_e, strictly due to variation in the heat of adsorption.

‘n’ gives an indication of favorability and $K_f \text{[mg/g (mg/l-1)n]}$, the capacity of the adsorbant. This Freundlich desorption isotherm was applied for the adsorption of indigo dye containing denim wastewater by PU foam immobilized cells, free cells and Ca-alginate immobilized cells in agitated mode (McKay et al., 1985).

In the present study, the n values were found to be in the range of 5.865 and K_0 values at 85.176 for adsorption of dyes studied onto PU foam immobilized cells in agitated mode. On the other hand, the Free (0.405) and Ca-alginate immobilized cells (0.625) were noted for ‘n’ values ranging at least than one.

Adsorption kinetics. To study the adsorption kinetics, two kinetic models were used that include Lagergren (Pseudo-first order) and Pseudo-second order models. The linearized form of Lagergren (Lagergren, 1898) and Pseudo-second order models can be studied in below. The straight line plots of log (q_e) vs time (time) indicates the applicability of the Lagergren equation. The K_1 values were calculated from the slope of the linear plots and were observed to be in the range at 10^{-1} per min at 27°C, respectively for adsorption of indigo dye by PU foam immobilized cells in agitated mode. The adsorption rate was about 1.4×10^{-2} per min (PU foam immobilized cells) at 100 mg/l $^{-1}$ dye concentration, respectively. Khattri and Singh (2000) reported that the temperature did not have any significant effect on the rate constant of crystal violet adsorption on neem sawdust. The K_1 values obtained in the present study are comparable with these observations, only PU foam immobilized cells were effective for removal of indigo dye than other treatment trials. Initially, the validity of the two models was checked by studying the kinetics under different initial dye concentrations. For Lagergren plot (free and Ca-alginate immobilized cells), correlation coefficients were found to be 0.82 to 1, but the calculated Q_o varied widely to experimental Q_o, suggesting the sufficiency of the model to fit the kinetic data for the initial concentrations examined. The reason for these differences in the Q_o values is that there is a time lag, possibly due to a boundary layer or external resistance controlling at the beginning of the sorption process. Whereas, the PU foam immobilized cells of correlation coefficient was found to be 0.99, hence from these results, we concluded that this model was highly sufficient for removal of indigo dye. The equilibrium rate constant of second order kinetics model, K_2, was calculated from the slope of linear plots. The values of K_2, ranged at 0.032 g$^{-1}$ mg$^{-1}$ min $^{-1}$ for the dyes studied in PU foam immobilized cells. The data obtained in the present study showed that dye adsorption by PU foam immobilized cell biomass fits well with the pseudo second order model than Lagergren model. Correlation coefficients were mostly greater than 0.99, and the lowest correlation coefficient (0.94) was better than the first order model correlation coefficients.

Mathematical modeling on bioremediation efficiency of multiple species used as biobarrier model. A multispecies biofilm interaction in porous media was considered with a three phase mixture consisting of a liquid phase, a solid PU foam phase and a biofilm phase. The biofilm can be considered to be part of the solid phase, it is simpler to take it as a separate phase. The four bacterial species present in the porous medium develops strong biofilm forming microbes with the nutrients. The fundamental equation for saturated transient ground water flow of constant density, in horizontal direction, can be written in the form (Allen et al., 1988),

$$S_i \frac{\partial h}{\partial t} - \frac{\partial}{\partial x} (K_1 \frac{\partial h}{\partial x}) = f$$ \hspace{1cm} (1.1)

The single fluid flow equation (1.1) arises from the mass balance law

$$S_i \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (K_1 \frac{\partial h}{\partial x}) = f$$ \hspace{1cm} (1.2)

Substitute for the specific discharge vector ν using Darcy’s law

$$\nu = -K_1 \frac{\partial h}{\partial x}$$ \hspace{1cm} (1.3)

Here h (x, t) denotes the hydraulic head, S_i is the specific storage, K is the saturates hydraulic conductivity and f (x, t) represents source. The specific discharge vector ν (x, t) called Darcy velocity represents the speed of the water. We assume there are no sources for the fluid, therefore $= 0$ in equation (1.1). Invoking the above simplifying assumptions to equations (1.1),

$$-\frac{\partial}{\partial x} (K_1 \frac{\partial h}{\partial x}) = 0$$ \hspace{1cm} (1.4)

The transport and reaction of nutrients and contaminants, and the growth of the two microbial species are governed by a system of partial differential equations. Finally we can work only with the liquid and biofilm phases,

$$\frac{\partial}{\partial t} \left(\rho_i \phi \rho \right) + \frac{\partial}{\partial x} (\rho_i \phi \rho_i C) - \frac{\partial}{\partial x} \left(D \frac{\partial \rho T}{\partial x} \right) = r C (\rho_i, \rho K, \rho C, \rho T)$$ \hspace{1cm} (1.5)

Here ρ_i, $i = B, K, C, T$, represents the intrinsic mass density of the contaminating degrading microbes, the strong biofilm forming microbes and nutrients respec-
tively. It follows that the small initial biobarrier-forming microbial concentrations are given by

\[
\phi \left(X_b, X_k \right) = \phi_b \left(1 - X_b - X_k \right) \tag{1.6}
\]

\[
K \left(X_b, X_k \right) = K_k \left(1 - X_b - X_k \right) \tag{1.7}
\]

Incorporating the above simplifying assumptions into equations (1.5) and using normalized concentrations as the unknowns yields the following governing system of differential equation,

\[
\frac{\partial S_j}{\partial t} + \nu \frac{\partial S_j}{\partial x} - \frac{\partial}{\partial x} \left(D \frac{\partial S_j}{\partial x} \right) = -\frac{1}{\gamma} \mu_X \left(S_j \right) X_k G \left(X_b + X_k \right) \tag{1.8}
\]

with γ typically small. One common assumption in Monod’s growth rate for bacteria is that there is only one nutrient that limits the growth. That is, there is an excess of the other nutrients. In this case the rate of substrate utilization has been usually described by Bailey and Ollis (1986).

\[
\mu^j \left(S_j \right) = \mu^j_{\text{max}} \frac{S_j}{K_j^j + S_j} \tag{1.9}
\]

For the biobarrier model;

\[
\mu \left(S_1, S_2, \ldots, S_n \right) = \mu^j_{\text{max}} \frac{S_j}{K_j^j + S_j} \tag{1.10}
\]

Simulations. To determine the solution of an ordinary deferential equation (1.4) we use a standard finite deference method to calculate h. Then we were using numerically differentiate Darcy’s law (1.3) to get the velocity field v. The temporal differentation in the microbial species equations (1.5) uses a forward Euler time integration. The nutrients and bacterial transport equations are solved using a Gillh shooting method (Kojouharov and Chen, 2000).

The first dual-species biobarrier model (1.7) with standard Monod kinetics (1.9) has been validated in with the porous media experiments done by Cunningham et al. (1991) for a 1 x 1 cm long PU foam cube with 0.70 mm, in diameter. In our first simulation, we consider initial and boundary conditions for \(S_C \) that correspond to a high nutrient concentration experiment, i.e. \(S_C \left(x, 0 \right) = S_C \left(0, t \right) = 175 \mu g/mL \). This is clearly the case, since the thresholds are smaller than the steady state values for the nutrient. In this scenario, the steady-state biofilm forming bacterial population density was able to degrade the contaminant Indigo dye containing denim industrial wastewater.

Conclusions. Operational stability and longevity of cells encapsulated in PU foam are significantly better than free and alginate cells. Biodegradation of industrial effluents rich in organic pollutants with immobilized bacterial strains in PU foam is an extremely versatile approach that can be used in detoxification of denim waste for longer periods, provided the process is made economical and convenient for use on a large scale.

Acknowledgements

The author (PP) and (SD) acknowledge acknowledges the University Grants Commission, India (Rajiv Gandhi National Fellowship) and Department of Biotechnology (Junior Research Fellowship) for their financial support and also thanks the Principal and Secretary of PSG College of Arts and Science (Coimbatore, Tamil Nadu, India) for their support.

Literature

Chatcharee L. 2011. M.E. Thessis (Membrane technology based hybrid system to remove paraquat from agricultural run off water). Mahidol University, Bangkok, Thailand.

Introduction

Mangrove is one of the most productive ecosystems and a natural renewable resource (Kathiresan, 2003; Balachandran et al., 2009). These are a unique woody plant community of intertidal coasts in the tropical and subtropical zones, which are regarded as highly productive ecosystems and abode to unexplored microbial diversity including actinomycetes (Balagurunathan et al., 2010). Mangroves provide a unique ecological niche to a variety of microorganisms (Agate, 1991). About 125 species of microorganisms (bacteria, fungi, algae) have been identified from mangrove environment (Kathirvel, 1996). Exploitation of less/unexplored ecosystems for actinomycetes is highly necessary for the discovery of new microbes and novel metabolites (Sahoo and Dhal, 2009).

Among the different mangrove locations Andhra Pradesh of India has dense mangrove vegetation found towards coast rather than on shore land because of the dense branching network of creeks, which exist towards the coast (RSAM, 1992). There is more mangrove vegetation on tidal flats on the western side of the Krishna delta than on its eastern side. Dense mangroves are also seen over recent sand / mud spits on the Nizampatnam bay (RSAM, 1992). Sparse mangroves are found on the eastern side of the Krishna delta.

Actinomycetes being gram-positive bacteria showing a filamentous growth like fungi. They are aerobic and group of organisms widely spread in nature, with high G+C content (60–70 mol %) and are important sources of antibiotics (> 50%) and enzymes (Edwards, 1993; Gharaiabeh et al., 2003; Weber et al., 2003; Shantikumar et al., 2006).

Screening and isolation of promising actinomycetes from mangrove ecosystem with potential antimicrobial compounds is still a thrust area of research and it is suggested that the exploration of new areas and habitats played a vital role in the search for new microbes and novel metabolites (Horinouchi, 2002). The genus Streptomyces produce approximately 75% of commercially and medically useful antibiotics and 60% of antibiotics used in agriculture (Sanghvi et al., 2014). Seasonal variations of antagonistic actinomycetes have been determined in selected mangrove ecosystems and highest numbers of actinomycetes during monsoon have been recorded. The microbial interrelationship in mangrove sediments does exist between bacteria and
actinomycetes, bacteria and fungi, and fungi and actinomycetes (Rathna Kala, 1995). However, across the globe, the world’s mangroves are threatened. Mangrove habitats are being destroyed as rivers are dammed, their waters diverted and the intertidal zone extensively developed for agriculture or aquaculture. Previous study showed that actinomycetes isolated from Malaysian soil have the potential to inhibit the growth of plant pathogens (Jeffrey et al., 2007). Likewise actinomycetes isolated from Turkey’s farming soil have the ability to inhibit Erwinia amylovora a bacteria that cause firelight to apple and Agro bacterium tumefaciens a causal agent of Crown Gall disease (Oskay et al., 2004). Besides acting agents for control of plant pathogens they also possess the capability for plant growth promotion (Nassar et al., 2003; da Silva Sousa et al., 2008). This is due to their capacity to produce IAA, antibiotics, siderophores, enzymes that have antimicrobial activity, substances that promote plant growth, solubilization of phosphates and competition with plant pathogens for substratum and nutrients (Hamdali et al., 2008; da Silva Sousa et al., 2008).

The present study aims at isolation of actinomycetes from mangrove ecosystem of Andhra Pradesh, India and to evaluate their plant growth promoting potential by siderophore and IAA production assay. The study also focusses on the genetic diversity study of the plant growth promoting isolates on the basis of morpho-physiological, biochemical and molecular characteristics.

Experimental

Materials and Methods

Soil sampling. A total of 10 soil samples and one water sample were collected from the Mangrove ecosystem of Kakinada District, Coringa (latitude 16°44’ to 16°53 ’N and longitude 82°14’ to 82°22’E), Andhra Pradesh, India by systematic sampling method. Samples were collected from 15 cm depth and transported to the laboratory in sterile bags and air-dried at room temperature. The geographical locations, as well as physiochemical properties of samples were recorded (Table I).

Isolation of actinomycetes. Samples were subjected to various enrichment techniques like CaCO₃, (Tsao et al., 1960), SDS (Hayakawa and Nonomura, 1989), phenol (Hayakawa et al., 2004), and media such as, Starch Casein Agar (SCA), Actinomycetes Isolation Agar (AIA) and Soil Extract Agar (SEA), amended with antibiotics nystatin (25 mg/ml), cycloheximide (50 mg/ml) and nalidixic acid (50 mg/ml), were employed for the isolation of Streptomyces. The air dried samples were incubated at 55°C for 5 min in an incubator. One gram of soil was dissolved in 100 ml of distilled water (10⁻² dilution) and 1 ml of 10⁻¹, 10⁻⁴, 10⁻⁵ serial dilutions were spread plated on media amended with antibiotics using dilution-plate technique and incubated at 30°C for 2–3 weeks. After incubation, actinomycetes colonies were selected and maintained by sub-culturing on ISP-2 agar (g/l: 4.0 g glucose; 4.0 g yeast extract; 10.0 g malt extract; 18.0 g agar) slants and stored at 4°C for further use.

Identification by polyphasic taxonomy. Out of the isolated actinomycetes eight isolates (AM2-2, AM2-3, AM2-4, AM2-7, AM2-8, AM2-10, AM2-11, AM5-16) were characterized by morpho-physiological, biochemical and molecular methods. Identification of actinomycetes was carried out, using standard methods of morphological and physiological traits (Shirling and Gottlieb, 1966) and Bergey’s Manual of Systematic Bacteriology (Williams et al., 1989). Morphological methods consisted of macroscopic and microscopic studies. For chemotaxonomic studies, the colonies were grown in glucose yeast extract malt extract broth for 4–5 days and then filtered out and processed for determination

Table I: Details of sources of samples, pH and geographical Co-ordinates

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Source</th>
<th>Geographical Co-ordinates</th>
<th>pH</th>
<th>CFU/g soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangroves water sample</td>
<td>Nearby sea shore.</td>
<td>16°30’–17°N, 82°10’–80°23’E</td>
<td>7.4</td>
<td>8.0 × 10⁻¹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Avicennia marina (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.2</td>
<td>2.25 × 10⁶</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Avicennia officinalis (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.3</td>
<td>1.9 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Excoecaria agallocha (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.6</td>
<td>2.4 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Sonneratia apetala (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.2</td>
<td>3.06 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Aegicerae corniculat (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.4</td>
<td>3.9 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Grasses growing in mangrove</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.0</td>
<td>2.86 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Ceriops decandra (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.2</td>
<td>3.93 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Rhizophora conjugata (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.5</td>
<td>3.61 × 10⁹</td>
</tr>
<tr>
<td>Rhizospheric soil</td>
<td>Hibiscus titraceous (mangrove plant)</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.1</td>
<td>4.05 × 10⁹</td>
</tr>
<tr>
<td>Soil sample</td>
<td>Sample near the start of Coringa wild life sanctuary</td>
<td>16°56’ N, 82°13’ E</td>
<td>7.3</td>
<td>3.1 × 10⁹</td>
</tr>
</tbody>
</table>
of the diaminopimelic acids (LL-DAP or meso-DAP) isomers and whole cell sugar patterns (Lechevalier and Lechevalier, 1980) using thin layer chromatography (TLC) on precoated cellulose plates (Merck, India).

Scanning electron microscopy. Spore surface ornamentation was evaluated by Scanning electron microscopy (SEM). Mycelia were taken (after 10 days of incubation) and washed in 0.1 M sodium cacodylate buffer (pH 7.4). They were fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer for 4 h at 4°C followed by post-fixation with 1% osmium tetroxide in 0.1 M sodium cacodylate buffer (pH 7.4) and dried in a critical point dryer (EMITECH model K850, Hitachi). The preparations were mounted onto aluminium holders, sputter-coated with 10 nm Au and observed by SEM (Hitachi model S3400 at 15–30 kV, 2–5.00 μm).

Physiological characterization, plant growth promoting (PGP) attributes and extracellular enzymes production. Physiological characterization such as the effect of pH (6–9), temperature (20–45°C), salinity and carbon source utilization were studied. Carbohydrate utilization was determined by growth on carbon utilization medium (ISP-2) (Pridham and Gottlieb, 1948) supplemented with 1% carbon source (Glucose, Arabinose, Rhamnose, Mannitol, Dulcitol, Raffinose, Fructose, Sucrose, Lactose, Inositol). The intrinsic resistance of actinomycetes to salinity was evaluated according to Yadav et al. (2009), by observing the growth at 28 ± 2°C in tryptose soya broth amended with different concentrations of NaCl (2, 4, 6, 8% w/v). For growth promoting attributes, phosphate solubilization (Mehta and Nautiyal, 2001), siderophore production (You et al., 2005), nitrate reduction (Glass et al., 1997), cyanogenesis (Schippers et al., 1990) and IAA production (Bano and Musarrat, 2003) were evaluated. The extracellular enzyme activity was assayed using standard methods such as amylase (Mishra and Behera, 2008), protease (Manachini et al., 1988), cellulase (Farkas et al., 1985), urease and gelatin degradation and hydrogen sulphide production were also studied following the protocol as reported by Cappuccino and Sherman (1992).

Molecular characterization

Extraction of actinomycetes DNA and PCR amplification. Genomic DNA was extracted from eight selected *Streptomyces* isolates (having plant growth promoting properties) following the modified protocol of Boudjella et al. (2006). The purity check of DNA for analysing its quality and quantity was done by measuring the absorbance at 260 and 280 nm by spectrophotometer. The 16S rRNA gene fragment for the *Streptomyces* was amplified by using two universal primer pair fD1 (5′-GAGTTTGATCCTGCGCTA-3′) and Rp2 (5′-CGGCTACCTTGTAGACTT-3′). The 16S rRNA was amplified by PCR using Promega kit. The final volume of reaction mixture of 50 μl contained 1X PCR buffer (10 mM Tris–HCl, 50 mM KCl, pH 9.0 at 25°C), 1.5 mM MgCl₂, 200 mM of each dNTP, 1 mM of each primer, 0.25 U of *Taq* polymerase and 500 ng of template DNA. The amplification was performed on BioRad thermal cycler (initial denaturation step at 98°C for 3 min, after which *Taq* polymerase was added, followed by 30 amplification cycles of 94°C for 1 min, 52°C for 1 min and 72°C for 10 min).

Amplified ribosomal DNA restriction analysis (ARDRA). For restriction analysis, amplified ribosomal DNA was digested with three restriction endonucleases *Taq* I, *Msp* I and *Hae* III (Promega, India) according to manufacturer’s instructions and analyzed by horizontal electrophoresis in 2.5% agarose gels at 70 V for 2.5 h and documented on alpha-Imager gel documentation system (Alpha-Imager, USA). The restriction analysis profiles generated, were compared by calculating Jaccard’s similarity coefficient for each pairwise comparison and dendrogram was constructed from the similarity matrix by the UPGMA. In order to test the goodness of fit of cluster analysis, co-phenetic value matrices were calculated and compared with the original similarity matrices that were UPGMA clustered by using the NTSYSpc analysis package (version 2.02e; Exeter Software, Setauket, NY). The amplified product of representative isolates from each clusters were purified by PCR purification kit (Promega, India) and sequenced directly with the *Taq*-mediated dideoxy chain terminator cycle sequencing in ABI 3130xl automated genetic analyser (Applied Biosystem, UK) according to manufacturer’s instructions. The sequences were aligned by ClustalW and BlastN programme was used to compare the sequences deposited in public databases and the phylogenetic tree was constructed with the MEGA software version 4.1 (Saitou and Nei, 1987). Gaps were treated by pairwise deletions and bootstrap analysis was done by using 5,000 pseudo-replications.

Accession numbers: A total of eight sequences of 16S rRNA gene were deposited in public databases (GenBank, NCBI) under the accession numbers from KC511801 to KC511808.

Results

Isolation and clustering of actinomycetes by polyphasic taxonomy. A total of 66 actinomycetes isolates were isolated from Coringa mangrove ecosystem, of these eight isolates showed considerable amount of variations in their colony morphology and possessing plant growth promoting attributes were chosen for further physiological and biochemical characterization. The population count of actinomycetes fluctuated from 4×10^4 to 80×10^4 g soil$^{-1}$ (Table 1). Most of the isolates
belonged to genus *Streptomycetes* and were tentatively identified by morphological characterization using aerial mycelial colour, substrate mycelial colour, pigments, arrangement of spores in chain, like straight chain, rectiflexibles etc. as revealed by scanning electron microscopy (Fig. 1). Cell wall composition analysis of actinomycetes using thin layer chromatography (TLC) revealed type I cell wall with LL-DAP isomers.

Physiological characterization of the isolated actinomycetes. Physiological tests are an important tool for classification of actinomycetes, influencing their growth and other properties. Physiological parameters like pH, temperature, NaCl concentration, carbon source utilization in the growth media were analysed. Growth of the selected 8 *Streptomycetes* isolates occurred in the pH range of 6–9 with optimum growth at pH 7.
The temperature range for growth was 20–45°C with the optimum temperature being 35°C. The isolates exhibited salt tolerance up to 8% with optimum growth at 6% NaCl; hence, the isolates could be placed in intermediate salt tolerance group. All the isolates were able to utilize 8–10 sugars as a carbon source out of 10 sugars being tested (Glucose, arabinose, rhamnose, mannitol, dulcitol, fructose, sucrose, lactose and inositol).

Plant growth promoting attributes and extracellular enzyme production. Plant growth promoting and extracellular enzyme activity of the selected eight isolates revealed that all the 8 isolates (100%) were siderophore and IAA producers, 4 (50%) were phosphate solubilizers, 3 (37.5%) were H₂S and amylase producers, 5 (62.5%) were urease, protease and HCN producers, 6 (75%) of the selected isolates were nitrate reducing and only 1 (12.5%) isolate produced the enzyme gelatinase (Table II).

Molecular characterization and phylogenetic analysis. The molecular characterization of the selected *Streptomyces* isolated from mangroves were carried, based upon 16S rRNA gene amplification and its RFLP pattern with a set of three restriction enzymes *Taq*I, *Msp*I and *Hae*III (Fig. 2) and dendrogram (Fig. 3) was generated using NTSYSpc software. For More precise identification the isolates were sequenced by Sanger’s di-deoxy nucleotide sequencing method and identified based on percentage similarity (> 97% compared with public database sequences, NCBI), by BLAST homology (Table III). Further phylogenetic analysis of the isolates was carried out for their similarity to known actinobacteria aligned together with the sequences (closest representatives), available in public databases (GenBank, NCBI), of actinobacteria (Fig. 4). Three genetic groups were formed among the identified isolates (Table III). The 4 isolates included in group I showed 100% sequence identity compared with most closely related sequences in public database (*Streptomyces cavourensis*, *Streptomyces albogriseolus*, *Streptomyces spiralis*, *Streptomyces rochei*), followed by 2 isolates in group II with 99% similarity (*Streptomyces roseoviolaceus*, *Streptomyces celluloflavus*) and 2 isolates in group III showing < 99% similarity (*Streptomyces globisporus*, *Streptomyces macrosporeus*).

Discussion

Actinomycetes population have been identified as one of the prominent group of soil microbes which differ with soil type, soil pH, geographical location and climatic condition (Arifuzzaman et al., 2010). The characterization of these microbes is as important as studying their existence in the natural environments (Hirsch and Valdes, 2010). Actinomycetes play a vital role in the soil such as mineralization of organic matters, immobilization of nutrients, antibiosis and production of plant growth promoters (Adegboye and Babalola, 2012). In our studies heat pre-treatments, enrichment techniques and selective isolation media resulted in considerable decrease in the unwanted bacterial population, which was similar as obtained by Hayakawa (2008). By various enrichment techniques and media used a total of 66 actinomycetes were isolated out of which 8 isolates with significant plant growth promotory attributes and growth under different pH and salinity levels, were characterised by 16S rRNA sequencing as belonging to *Streptomyces* genera. This genus had also been previously evaluated for the characterization of plant growth promoting and other important traits as...
Table II
Phenotypic characteristics of all selected *Streptomyces* strains.

<table>
<thead>
<tr>
<th>Properties</th>
<th>S. globisporus AM2-2</th>
<th>S. roseoviolaceus AM2-3</th>
<th>S. cavourensis AM2-4</th>
<th>S. celluloflavus AM2-10</th>
<th>S. albogriseolus AM2-11</th>
<th>S. spiralis AM2-7</th>
<th>S. macrosporeus AM2-8</th>
<th>S. rochei AM5-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color of aerial mycelium</td>
<td>White</td>
<td>white</td>
<td>Ivory</td>
<td>White</td>
<td>White</td>
<td>White</td>
<td>White</td>
<td>Creamish white</td>
</tr>
<tr>
<td>Color of substrate mycelium</td>
<td>Yellow</td>
<td>Dark brown</td>
<td>Yellow brown</td>
<td>Light yellow</td>
<td>Yellow brown</td>
<td>Cream</td>
<td>Red brown</td>
<td>Yellow</td>
</tr>
<tr>
<td>Spore mass</td>
<td>Light brown</td>
<td>White</td>
<td>Ivory</td>
<td>Off white</td>
<td>Light grey</td>
<td>Cream</td>
<td>Creamish</td>
<td>Cream</td>
</tr>
<tr>
<td>Diffusible pigments</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Carbon Source Utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arabinose</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Dulcitol</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fructose</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lactose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Inositol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chemotaxonomic characters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell wall amino acid Analysis</td>
<td>L-DAP</td>
<td>L-DAP</td>
<td>L-DAP</td>
<td>L-DAP</td>
<td>L-DAP</td>
<td>L-DAP</td>
<td>L-DAP</td>
<td>L-DAP</td>
</tr>
<tr>
<td>PGP traits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAA Production</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phosphate Solubilization</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Siderophore Production</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HCN Production</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nitrate Reduction</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hydrolitic enzymes and biochemical characterization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Protease</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gelatinase</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Amylase</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>H₂S Production</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

Table III
Closest BLASTN matches for the full 16S rRNA sequences and their percentage similarity with the closest actinobacterial strains.

<table>
<thead>
<tr>
<th>IsolateCode</th>
<th>Closest species</th>
<th>GenBank accessionnumber</th>
<th>Similarity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM2-2</td>
<td>Streptomyces globisporus</td>
<td>KC511801</td>
<td>98%</td>
</tr>
<tr>
<td>AM2-3</td>
<td>Streptomyces roseoviolaceus</td>
<td>KC511802</td>
<td>99%</td>
</tr>
<tr>
<td>AM2-4</td>
<td>Streptomyces cavourensis</td>
<td>KC511803</td>
<td>100%</td>
</tr>
<tr>
<td>AM2-10</td>
<td>Streptomyces celluloflavus</td>
<td>KC511804</td>
<td>99%</td>
</tr>
<tr>
<td>AM2-11</td>
<td>Streptomyces albogriseolus</td>
<td>KC511805</td>
<td>100%</td>
</tr>
<tr>
<td>AM2-7</td>
<td>Streptomyces spiralis</td>
<td>KC511806</td>
<td>100%</td>
</tr>
<tr>
<td>AM2-8</td>
<td>Streptomyces macrosporeus</td>
<td>KC511807</td>
<td>98%</td>
</tr>
<tr>
<td>AM5-16</td>
<td>Streptomyces rochei</td>
<td>KC511808</td>
<td>100%</td>
</tr>
</tbody>
</table>
Fig. 2. Restriction digestion banding pattern of isolates amplified by 16S rDNA and digested by *Taq* I, *Msp* I and *Hae* III restriction enzymes.

Lane M: 100bp molecular weight marker (Genei, Bangalore), Lane 1: AM2-2, Lane 2: AM2-3, Lane 3: AM2-4, Lane 4: AM2-10, Lane 5: AM2-11, Lane 6: AM2-7, Lane 7: AM2-8 and Lane 8: AM5-16

Fig. 3. UPGMA cluster analysis showing the genetic relationship among eight isolates of Actinomycetes, banding pattern based on restriction digestion by restriction enzyme *Taq* I, *Hae* III and *Msp* I
enough information available in the public databases (Zhang et al., 1998; Malviya et al., 2011; Yandigeri et al., 2012), but *Streptomyces* isolated from stressed habitats with plant growth promoting potential have not been studied extensively. Bacteria isolated from different stressed habitats possess stress tolerance capacity along with plant growth-promoting traits. Salinity tolerance and the ability of *Streptomyces* for the production of extracellular enzymes, plant growth promoting attributes and other activities were evaluated and it was reported that all the 8 (100%) *Streptomyces* isolates from mangrove region could tolerate up to 8% NaCl concentration showing optimum growth at 6% NaCl concentration, hence the strain could be placed in intermediate salt tolerance group according to Tresner et al. (1968). The ability of *Streptomyces* strains to tolerate high concentrations of NaCl is well known (Waksman, 1959). Similar results were reported from the *Streptomyces* isolated from Indo-Gangetic Plains (IGP) (Malviya et al., 2011), and halophilic *Streptomyces* from India and their utilization in agricultural fields (Vasavada et al., 2006). Da Silva Sousa et al. (2008) studied six *Streptomycetes* isolated from rhizospheric soil of various crops and found out that they could tolerate a NaCl level up to 3%. Kavya et al. (2012), also reported salinity tolerance of *Streptomyces* from Coringa mangrove ecosystem but their results indicated a tolerance of 3–4% NaCl concentration, which is less as compared to isolates under current study. Sadeghi et al. (2012) have reported the beneficial role of *Streptomyces* on PGP activity under salinity stress. Hence, it can be concluded that these strains may have the ability to survive in the harsh environments such as saline and acidic to alkaline pH soils. In our studies all the 8 *Streptomyces* isolates were positive IAA and siderophore producers. There are many reports which demonstrated the ability of endophytic and rhizospheric soil *Streptomyces* to produce indole acetic acid and thus promote plant growth (Khamna et al., 2010; Solans et al., 2011; Yandigeri et al., 2012; Kaur et al., 2013). In the rhizosphere soils, root exudates are the natural source of tryptophan for rhizosphere micro-organisms, which may enhance auxin (IAA) biosynthesis in the rhizosphere. Likewise Sadeghi et al. (2012) have also reported the production of IAA and siderophore by halotolerant *Streptomycetes* isolate. Siderophore production may be involved in the inhibition of pathogens and thus promote plant growth indirectly because *Streptomyces* species are known for the production of hydroxamate type siderophores, which inhibit phytopathogen growth by competing for iron in rhizosphere soils (Khamna et al., 2009; Kaur et al., 2013), thus our isolates could be involved in the inhibition of pathogens. Malviya et al. (2011), also reported production of siderophore by *Streptomyces* isolated from IGP region but in their studies only 8% of the isolates from the total 145 isolates were positive siderophore producers but in our studies 75% of the selected *Streptomyces* were nitrate

![Fig. 4. NJ phylogenetic tree of full 16S rRNA sequences from selected isolates. The sequence data for several closely related actinobacterial type cultures were recovered from GenBank and included in the tree. The boot strap values from 5,000 pseudoreplications are shown at each of the branch points on the tree. Bar indicates % similarity](attachment:image.png)
reduces, 50% were phosphate solubilizers and 62.5% were HCN producers. In agriculture, biological phosphate solubilisation as an alternative to natural phosphate utilisation plays an important role in efficient nutrient uptake of plants. Patil et al. (2010) isolated nine antagonistic actinomycetes from IGP region and found that out of them 8 were *Streptomyces*. Out of these eight *Streptomyces* isolates five were phosphate solubilizers and one produced HCN. Some actinomycetes are known to produce hydrolytic enzymes such as protease and amylase (Kaur et al., 2013). These enzymes help in preventing the crops from plant pathogens and detrimental microbes by degrading their cell walls. In our study we reported that five of our isolates could produce enzyme protease and three isolates were amylase producers. Also it was reported that five isolates were producing urease, three H$_2$S producers and one isolate was able to show gelatinase activity. After studying the cultural and morphological characteristics of the potent plant growth promoting isolates, they were assigned under the genus *Streptomyces*. Concerning phenotypic characteristics, isolates produced varied colour aerial and substrate mycelia. Their chemotaxonomic characteristics further validate that they all belong to genus *Streptomyces* as their cell wall contain L-diaminopimelic acid (cell wall type-I). Thus, this study is in accordance with the previous reports that *Streptomyces* are known to be predominant among actinomycetes with antagonistic and plant growth promoting potential and produce antifungal compounds (Ouhdouch et al., 2001; Kaur et al., 2013).

The reliable generic identification of members of this genus by the first approach was confirmed by DNA sequence analysis. Variations in 16S rDNA can also be assessed by analyzing restriction fragment length polymorphism (RFLP) of 16S rDNA sequences. PCR based markers such as RAPD, RFLP, DAPD and SSR have been used to discriminate bacterial strains and to analyse genetic diversity (Yadav et al., 2013). In this study, we used 16S rDNA sequence-based phylogenetic analysis to investigate the species diversity of Streptomyces. It is also known that microbes with 16S rRNA sequence similarity up to 97% identical should be considered as members of the same genus (Petit et al., 1999; Malviya et al., 2011). Since all the isolates were belonging to genus *Streptomyces*, we tried to study their diversity using ARDRA, which is the rapid and convenient method, and can be very useful in grouping actinobacterial isolates efficiently as well as effectively reduce the number of isolates by de-replicating the isolates during screening for diversity (Jiang et al., 2010). In the current study, we used a set of three restriction endonucleases *Msp I*, *Hae III* and *Taq I* that specifically recognize the sequence 'CCGG', 'GGGC' and 'TCGA' respectively. The results of the different RFLP patterns obtained allowed us to effectively differentiate the strains into distinct groups of actinobacteria. In our study, a total of 8 representative isolates were identified by 16S rRNA gene sequence analysis as *S. globisporus* (KC511801), *S. roseoviolaceus* (KC511802), *S. cavourens* (KC511803), *S. celuloflavus* (KC511804), *S. albogriseolus* (KC511805), *S. spiralis* (KC511806), *S. macrosporeus* (KC511807) and *S. rochei* (KC511808). All the isolates recorded 98–100% similarity with the representative isolates as shown in the Table III. Similar results were observed by Patil et al. (2010) and Malviya et al. (2011) the *Streptomyces* isolated by them also showed 98–100% similarity except one isolate in case of Malviya et al. 2011 which was 96% similar with the representative isolate.

The present study highlights that mangroves are the potential reservoirs for actinomycetes especially which can tolerate salt levels and biochemical and plant growth promotion assay of the isolates demonstrates their potential to be used as biocontrol agents and biofertilizers which may play important role in plant growth promotion either directly or indirectly and thereby increase crop yield.

Acknowledgements

Authors are thankful to the Indian Council of Agricultural Research (ICAR), New Delhi, India for financial assistance under the Network project ‘Application of Microorganisms in Agriculture and Allied Sectors’ (AMAAAS) and National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India for providing the lab facilities to carry out this work.

Literature

Germination and Inactivation of *Alicyclobacillus acidoterrestris* Spores Induced by Moderate Hydrostatic Pressure

BARBARA SOKOŁOWSKA1*, SYLWIA SKĄPSKA1, MONIKA FONBERG-BROCZEK2, JOLANTA NIEZGODA1, IZABELA PORĘBSKA1, AGNIESZKA DEKOWSKA1 and SYLWESTER J. RZOSKA2

1 Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dąbrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
2 Laboratory of Biomaterials, Institute of High Pressure Physics of the Polish Academy of Sciences, Warsaw, Poland

Submitted 22 June 2014, revised 21 October 2014, accepted 25 March 2015

Abstract

Given the importance of spoilage caused by *Alicyclobacillus acidoterrestris* for the fruit juice industry, the objective of this work was to study the germination and inactivation of *A. acidoterrestris* spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of *A. acidoterrestris* spores. At low pH, spore germination of up to 3.59–3.75 log and inactivation of 1.85–2.04 log was observed in a low pressure window (200–300 MPa) applied at 50°C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24–0.66 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20°C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70°C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

Keywords: *Alicyclobacillus acidoterrestris*, germination, high hydrostatic pressure, inactivation spores

Introduction

Alicyclobacillus acidoterrestris, thermoacidophilic and spore-forming bacteria may cause spoilage of pasteurized juices and beverages, producing compounds associated with a disinfectant-like odour: guaiacol, 2,6-dibromophenol, 2,6-dichlorophenol (Baumgart et al., 1997; Borlinghaus and Engel, 1997, Pettipher et al., 1997; Orr et al., 2000; Jensen and Whitfield, 2003; Gocmen et al., 2005; Niwa, 2005; Danylyuk et al., 2011).

These bacteria have been isolated from orchard soil (Eguchi et al., 2001; Goto et al., 2008; Groenewald et al., 2008; Wang et al., 2010), fruits (Eguchi et al., 2001; Parish and Goodrich, 2005), juice production environment (Eguchi et al., 2001; Steyn et al., 2011, Zhang et al., 2013) and from many final products-juices and juice concentrates all over the world (Cerny et al., 1984; Splitstoesser et al., 1994; Baumgart et al., 1997; Pettipher et al., 1997; Eguchi et al., 2001; Durak et al., 2010; Mc Knight et al., 2010; Danylyuk et al., 2011; Oteiza et al., 2011).

The presence of this new type of spoilage bacterium in aseptically packaged apple juice was first reported in 1984 (Cerny et al., 1984) and since then *A. acidoterrestris* has been recognized as a significant spoilage organism in the fruit juice industry (Silva et al., 2000).

A. acidoterrestris strains show the ability to germinate and grow at a pH range of from 2.0 to 6.0 at a temperature of 20–55°C, with an optimum range of 42–53°C (Baumgart et al., 1997; Deinhard et al., 1987; Sokolowska et al., 2010). *A. acidoterrestris* contains ω-cyclohexyl fatty acids in its cellular membrane composition. These ring structures are of special physiological importance for cells at a high growth temperature and low pH (Kirschke and Poralla, 1990).

A. acidoterrestris spores show extremely high thermal resistance depending on the kind of juice, its soluble solids content and pH. The values of 95% (time in minutes, during which the number of living cells decrease by 90%, at 95°C) in various juices that can be found in the literature were 1.85–15.1 min (Splitstoesser et al., 1994; Baumgart et al., 1997; Komitopolou et al., 1999, Silva et al., 1999; Bahceci and Acar, 2007; Sokolowska et al., 2008; Bevilacqua and Corbo, 2011). The standard pasteurization process using temperatures
of 85–95°C, which is aimed at destroying vegetative pathogens, is therefore ineffective against these bacteria spores (Splitstoesser et al., 1994; Baumgart et al., 1997; Silva et al., 2000).

Using a higher temperature can negatively affect the nutritious and sensory quality of the juices, therefore there are attempts to use hydrostatic pressure (HP) as a non-thermal spore-inactivating process.

A few studies report _A. acidoterrestris_ vegetative cell and spore inactivation by HP (Lee et al., 2002; Alpas et al., 2003; Ardia, 2004; Lee et al., 2006; Vercammen et al., 2012; Silva et al., 2012; Skapska et al., 2012, Sokolowska et al., 2012, Sokolowska et al., 2013). _A. acidoterrestris_ vegetative cells were killed by HP when 350 MPa at 50°C was used. More than a 4 log reduction was achieved in BAM broth (_Bacillus acidocaldarius_ medium), orange, apple and tomato juices after 20 min pressurization (Alpas et al., 2003).

It was also shown that the effect of _A. acidoterrestris_ spore inactivation in apple juice, using pressure ranging from 207 to 621 MPa (up to 10 min), was strongly dependent on the process temperature: at 22°C no reduction was achieved, at 45°C a max. 3.5 log reduction occurred and at 70°C and at 90°C, complete (>5.5 log) reduction was observed after 5 min treatment, irrespective of the pressure used (Lee et al., 2002). In accordance with these results are those of Ardia (2004).

Previously a study by Skapska et al. (2012), showed large differences in sensitivity to HP between the spores of eight wild _A. acidoterrestris_ strains. The reduction in the spore number in apple juice after treating at 300 MPa for 10 min was 1.3–3.5 log, depending on the strain. Increasing the pressure to 500 MPa did not result in a significantly more efficient pasteurization process. The use of oscillatory high pressure has been proven to be more effective. The greatest reduction in spores of the two most resistant to HP _A. acidoterrestris_ strains (TO-29/4/02 and TO-117/02) was 2.4 and 3.1 log cfu/ml when 300 MPa in six five-min cycles at 50°C were applied. Subsequent research (Sokolowska et al., 2012) has shown that lower pressure of 200 MPa at 50°C, applied both in a continuous and oscillatory mode, produced an even better effect. In these conditions, a reduction of 1.5 log in the _A. acidoterrestris_ (TO-29/4/02 strains) spore count in apple juice was obtained after 10 min of continuous pressurization. After six five-min cycles a reduction of 5.0 log was achieved.

A recent study carried out using orange juice (Silva et al., 2012), showed an approximate 2 log reduction in _A. acidoterrestris_ spores after processing with 200 MPa at 65°C for 10 min, slightly better results (~2.5 log) were achieved when the pressure was increased to 600 MPa.

Only one article concerning the germination of _A. acidoterrestris_ spores induced by HP was found (Vercammen et al., 2012). This experiment, carried out for 10 min with a pressure of 100–600 MPa, in buffers at pH 4.0, 5.0 and 7.0 and a temperature of 40°C, showed no significant spore inactivation, although spore germination of up to about 2 log was observed in a low pressure window (100–300 MPa). When spores were treated in tomato sauce with pH 4.2 and 5.0 with 100–600 MPa at 25, 40 and 60°C for 10 min, the germination level was generally higher than in buffers. HP treatment conducted at 60°C resulted in the inactivation of most of the germinated spores.

The inactivation of _A. acidoterrestris_ spores under high pressure was shown to be suppressed by a high soluble solids content in apple juice concentrates (Lee et al., 2006; Sokolowska et al., 2013). No information about the germination of these spores in concentrated juices was found.

Depending on the temperature and level of pressure applied, bacterial endospores pass through different physiological pathways, which could induce spore germination or their subsequent inactivation during treatment. Moderate hydrostatic pressure induces spore germination by triggering the spores’ nutrient receptors (Setlow, 2003; Reineke et al., 2012). During the germination process, spores progressively lose their typical resistance and become more readily inactivated like vegetative cells (Wuytac et al., 1998; Setlow, 2003; Moir, 2006; Luu and Setlow, 2014). The changes in spore sensitivity to heat and high pressure, which were used to differentiate the stages in the germination process in this work, were described by Black et al. (2007). In the first stage, the spores partially lose their impermeability to water, leading to an influx of water (with a slight increase in volume) and leakage of solutes (dipicolinic acid – DPA, Ca^{2+}). Consequently, they become sensitive to wet heat (Setlow, 2003). During the second stage, the cortex is enzymatically digested, leading to full core rehydration, greater hydration of the core macromolecules, and a greater loss of spore-specific resistance, including to high pressure (Wuytac et al., 1998). At the end of the second stage, the small acid-soluble spore proteins (sasP) are hydrolyzed to amino acids, which are subsequently used in protein synthesis by the growing cell (Moir, 2006; Setlow, 2003). Protein synthesis and spore metabolism only occur in the outgrowth phase, in which the germinated spore is converted into a growing cell. According to Wuytac et al., 1998 and Reineke et al. (2012) spores are unable to proceed to stage two of germination above 500 MPa. Further spores are unable to outgrow under pressure.

A treatment pressure above 500 MPa combined with elevated temperatures (>60°C), could induce rapid spore germination by opening the spores’ Ca^{2+}-DPA channels (Paidhungat et al., 2002), which is accompanied by the release of large depots of DPA and the associated divalent cations (predominantly Ca^{2+}) from...
their core. The presumed direct opening of Ca$^{2+}$-DPA channels are even active at 200 MPa and a moderate temperature, but this is not a dominant factor influencing the germination rate (Reineke et al., 2012).

The aim of this work was to study the germination and inactivation of *A. acidoterrestris* spores induced by moderate HP and the effect of different factors, such as pressure, temperature, time, mode of pressure application, type of medium and soluble solids content in apple juice, on this process. Knowledge of factors that promote the germination step may lead to the increased lethality of HP treatments on bacterial spores.

Experimental

Materials and Methods

Tested organism. The *A. acidoterrestris* strain TO-117/02 used in this study was isolated from Polish concentrated apple juice, using the International Federation of Fruit Juice Producers’ method. Confirmation of *A. acidoterrestris* was based on the utilization of erythritol, with acid production (Baumgart, 2003) and guaiacol production in YSG medium with vanillic acid (Niwa and Kawamoto, 2003). Identification at the species level was also performed by 16S rRNA gene sequencing and 16S rRNA gene RFLP characterization (Dekowska et al., 2013). This strain was chosen from among eight wild strains as highly resistant to HP in our previous study (Skąpska et al., 2012). Spores were produced based on the method described by Massaguer et al. (2002), with some modifications (Sokolowska et al., 2012).

Just before the experiments, spores were suspended either in McIlvain buffer solution (mixture of relevant volume of 0.1 molar citric acid and 0.2 molar disodium phosphate) pH 4.0 and pH 7.0 or in apple juice at approximately 6–7 log cfu/ml.

Hydrostatic pressure treatment. Treatment was carried out in a high pressure food processor piston type vessel with inner diameter 110 mm, a working volume of 1.5 l, with a maximum operating pressure of 600 MPa (Izopress, Moscow). The pressure-transmitting fluid was distilled water and polypropylene glycol (1:1). The working temperature of the apparatus ranged from −10°C to +80°C. A pressure of up to 200 MPa was generated in 120–150 s; the release time was 2–4 s.

Unpressurized samples were used as controls. The pressurization times reported do not include the come-up and come-down time. The assays were performed using two independent samples from two independent processes.

Apple juice. Apple juice concentrate (70.7°Bx, 53.0% sugar, pH 3.1, titratable acidity as malic acid 3.89%), containing no *A. acidoterrestris* spores, was obtained from the Polish producer. Two-, three- and six-fold dilutions were made from this concentrate with sterile deionized water. If commercial pasteurized apple juice was used (pH 3.4, soluble solids 11.2°Bx), before conducting the experiment it was filtered through a 0.45 µm Millipore® filter to remove possible *A. acidoterrestris* spores. The soluble solids and pH were measured using a refractometer (MS REF 090L My-Soft) and pH meter (CP-315 ELMETRON).

Determination of inactivation and germination of *A. acidoterrestris* spores. The number of spores surviving the different HP treatments was evaluated immediately after processing and after heat treatment at 80°C for 10 min. This heat treatment was found not to kill ungerminated spores (data not shown). The spread plate method on BAT-agar (Merck) with incubation for 5 days at 45°C was used. Limit of detection this method was 1 cfu/ml.

Pressure-induced inactivation was the difference between the plate count before and after HP treatment. Pressure-induced germination was the difference between the plate count before HP treatment and after HP followed by heat treatment at 80°C for 10 min (Black et al., 2007; Nguyen Thi Minh et al., 2010; Vercammen et al., 2012), expressed as log (cfu/ml).

Data analysis. An analysis of the variance and Duncan’s multiple-range test, using StatSof Statistica 7.1, was used to test the significance of the differences ($p < 0.05$) between the number of germinated and inactivated spores. The bars on the figures indicate the mean standard deviation for data points.

Results and Discussion

Influence of pressure and type of medium on the germination and inactivation of *A. acidoterrestris* spores. To study the effect of moderate pressure on the germination and inactivation of *A. acidoterrestris*...

spores, a temperature of 50°C was chosen to stimulate germination without causing a thermal pasteurization effect. Low (4.0) and neutral (7.0) pH buffers and real food – apple juice – were used in this part of the study.

Germination of spores was observed in all used media (Table I). The highest germination, from 3.14 to 3.75 log, was found in the pH 4.0 buffer within the entire range of applied pressure. Statistically significant ($p < 0.05$) maximum germination occurred at 200 and 300 MPa in the pH 4.0 buffer. Similar germination was observed in apple juice pressurized at 200 MPa – 3.59 log. Generally the lowest germination was obtained in the pH 7.0 buffer, but the results noted in the pressure range 100–400 MPa did not differ significantly ($p > 0.05$).

Significant ($p < 0.05$) inactivation, of 1.84–2.04 log, was observed in the pH 4.0 buffer as a result of pressure treatment in the 100–400 MPa range. The level of inactivation in apple juice was similar – a reduction from 1.83 to 1.95 log was achieved in the slightly narrower 100–300 MPa range. Less inactivation occurred at 400 or 500 MPa.

A. acidoterrestris spores germinated in the pH 7.0 buffer but were not inactivated during HP treatment. Inactivation only reached 0.24–1.06 log, with a significant maximum ($p < 0.05$) at 400 MPa (Table I).

The results indicate that a low pH supports both the germination and inactivation of *A. acidoterrestris* spores. In our study the highest germination was achieved when 200–300 MPa in pH 4.0 buffer or 200 MPa in apple juice at 50°C was used, which is consistent with the results obtained by Vercammen et al. (2012).

Considerable inactivation of *A. acidoterrestris* spores was also achieved in our study. In apple juice in the low pressure window (100–300 MPa), the reduction was significantly higher than at 400 or 500 MPa. Contrary to our results, in the Lee et al. (2002) study there was no significant difference among the effect of 207, 414 and 621 MPa on *A. acidoterrestris* spore viability at 45°C in apple juice, a 3.5 log reduction was always observed, irrespective of the pressure used. Yet other results were obtained by Silva et al. (2012) in orange juice. When processed at 45°C, the inactivation of spores treated with 200 MPa was only about 0.5 log and about 1.0 log, when 600 MPa was used. The different results obtained in the work presented may indicate large variations in pressure resistance among the *A. acidoterrestris* strains, as well as the influence of the kind of juice, sporulation conditions and equipment used in the various studies.

Impact of temperature and time on the germination and inactivation of *A. acidoterrestris* spores in apple juice during pressure treatment

For this study, pressure of 200 MPa was chosen as the best for germination and inactivation of *A. acidoterrestris* spores in apple juice. As shown in Figure 1, the germination of *A. acidoterrestris* spores in apple juice depended on the temperature and time. At 20°C there was little germination and 2.04 log was achieved after 30 min, while inactivation in these conditions achieved only 0.61 log. After 5 min at 50°C, the degree of germination was 2.65 log, but the spores did not inactivated. Prolonging the time of treatment at 50°C to 30 min, significantly ($p < 0.05$) supported both germination and inactivation, which resulted in 4.06 log of germinated spores and 2.76 log of inactivated spores.

When HP treatment was conducted at 70°C, germination was significantly higher ($p < 0.05$) than at 50°C for all used pressurization times. Most of the germinated spores were also inactivated at 70°C. Treatment at this temperature was found not to kill ungerminated spores, but to cause a thermal pasteurization effect on vegetative cells. Approx. 1.7 log of *A. acidoterrestris* TO-117/02 strain vegetative cells was inactivated after 30 min at 70°C (data not shown).

The highest germination and inactivation were achieved when 200 MPa was applied at 70°C, which is consistent with the results obtained by other researchers (Silva et al., 2012; Vercammen et al., 2012). Spores of the *A. acidoterrestris* TO-117/02 strain used in our study showed higher resistance to HP at 70°C than the

Table I

The germination and inactivation of *A. acidoterrestris* spores under various pressures at low and neutral pH in buffer solutions and commercial apple juice (HP treatment at 50°C for 20 min).

<table>
<thead>
<tr>
<th>Pressure [MPa]</th>
<th>McIlvain buffer pH 4.0</th>
<th>McIlvain buffer pH 7.0</th>
<th>Commercial apple juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>3.14 ± 0.03aA</td>
<td>1.85 ± 0.13aA</td>
<td>2.95 ± 0.02bA</td>
</tr>
<tr>
<td>200</td>
<td>3.75 ± 0.18bA</td>
<td>2.02 ± 0.02aA</td>
<td>2.84 ± 0.34aA</td>
</tr>
<tr>
<td>300</td>
<td>3.74 ± 0.05aA</td>
<td>2.04 ± 0.05aA</td>
<td>2.73 ± 0.07bA</td>
</tr>
<tr>
<td>400</td>
<td>3.39 ± 0.06aA</td>
<td>1.84 ± 0.06aA</td>
<td>2.69 ± 0.09aA</td>
</tr>
<tr>
<td>500</td>
<td>3.32 ± 0.12aA</td>
<td>1.37 ± 0.05aA</td>
<td>1.86 ± 0.02aA</td>
</tr>
</tbody>
</table>

Mean values in columns with different lowercase letters are significantly different at $p < 0.05$, separately for germination and inactivation.

Mean values in rows with different capital letters are significantly different at $p = 0.05$, separately for germination and inactivation.
strain used by Lee et al. (2002), who observed a complete (>5.5 log) reduction in apple juice after 5 min treatment with 207 MPa at 71°C.

The higher spore inactivation rate at a higher temperature can be explained by the acceleration of enzymatic reactions during progression from the first to second stage of germination as well as by the fact that first stage germinated spores are directly inactivated by temperatures above 70°C (Nguyen Thi Minh et al., 2010).

Since pressurization conducted at 500 MPa at 50°C resulted in the lowest germination and inactivation, it was also verified whether an increase in temperature would enhance these processes. A higher process temperature (70°C) strongly stimulated germination and inactivation at 500 MPa. The germination achieved 6.72 log and inactivation 6.13 log and the increase was significantly higher than at a lower (200 MPa) pressure (Table II). This phenomenon was also observed in tomato juice (Vercammen et al., 2012).

Effect of mode of pressure application on the germination and inactivation of A. acidoterrestris spores. Samples of A. acidoterrestris spores in buffer solutions (pH 4.0 and 7.0) and apple juice were exposed to hydrostatic pressure treatment in continuous or oscillatory mode with 200 MPa at a temperature of 50°C. Each cycle was composed of 5 min holding time at an elevated pressure and a 5 min pause at atmospheric pressure.

The degree of germination and inactivation of A. acidoterrestris spores increased when the pressure time was prolonged and the pH decreased (Table III). After

Table II
Germination and inactivation of A. acidoterrestris spores after 20 min under various pressures and temperature in commercial apple juice.

<table>
<thead>
<tr>
<th>Pressure [MPa]</th>
<th>Pressurization temperature</th>
<th>50°C</th>
<th>70°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3.59 ± 0.10^a</td>
<td>1.95 ± 0.12^a</td>
<td>5.84 ± 0.04^b</td>
</tr>
<tr>
<td>500</td>
<td>1.73 ± 0.01^a</td>
<td>0.85 ± 0.02^a</td>
<td>6.72 ± 0.00^b</td>
</tr>
</tbody>
</table>

Mean values in columns with different lowercase letters are significantly different at p < 0.05, separately for germination and inactivation.

Mean values in rows with different capital letters are significantly different at p < 0.05, separately for germination and inactivation.
30 min of continuous pressurization with 200 MPa at 50°C, 3.06 log of spores suspended in pH 7 buffer germinated, but only 0.24 log was inactivated. Germination in a pH 4.0 buffer and in commercial apple juice was higher (3.24 and 4.06 log respectively). In these conditions inactivation achieved 1.79 log in a pH 4.0 buffer and 2.78 log in apple juice. Part of the spore population still remained ungerminated.

The results achieved in this part of our study also show that the nutrients present in commercial apple juice can promote the germination of *A. acidoterrestris* spores during pressurization under moderate HP. The same phenomenon was observed by Vercammen *et al.* (2012), in tomato juice.

Many studies have demonstrated that the application of pressure cycling is more efficient than constant pressure treatment when the total exposure is equivalent (Hayakawa *et al.*, 1994; Furukawa *et al.*, 2000; Sokolowska *et al.*, 2012). Furukawa *et al.* (2000) concluded that hydrostatic pressure treatment initiated the germination of bacterial spores, and that repeated rapid decompression caused disruption, injury and inactivation of the germinated spores. Nguyen Thi Minh *et al.* (2010) suggest that after inducing germination of spores under the first pressure treatment, decompression between the pressure cycles favours the progression from first stage to second stage of the germinated spores. The second stage germinated spores are then inactivated by subsequent pressure cycles, which would explain the greater spore destruction by pressure cycling. Recently this statement was disproven by Kong *et al.* (2014), who observed that spore germination stopped 5 to 10 min after the HP was released. Obtained in those study results suggest that an HP of 150 MPa for < 30 s is sufficient to fully activate spores' germinant receptors (GRs), which remain activated at 1 MPa but can deactivate at ambient pressure.

The results obtained (Table IV) showed that spores germinated after 2 cycles: 2.72 log in pH 4.0 buffer or 3.11 log in apple juice. Germination achieved 3.89 log in pH 4.0 buffer and 4.04 log in apple juice after 6 cycles. Inactivation was also effective and achieved 2.67 log and 2.70 log respectively. These results did not differ significantly (*p* > 0.05) for both media. Only after 4 cycles germination in apple juice was significantly higher than in pH 4.0 buffer.

<table>
<thead>
<tr>
<th>Number of cycle</th>
<th>McIlvain buffer pH 4.0</th>
<th>McIlvain buffer pH 7.0</th>
<th>Commercial apple juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.72 ± 0.06 A<sup>a</sup></td>
<td>1.57 ± 0.05 A<sup>a</sup></td>
<td>2.19 ± 0.09 A<sup>b</sup></td>
</tr>
<tr>
<td>4</td>
<td>3.45 ± 0.04 A<sup>a</sup></td>
<td>2.28 ± 0.03 A<sup>a</sup></td>
<td>2.89 ± 0.03 A<sup>b</sup></td>
</tr>
<tr>
<td>6</td>
<td>3.89 ± 0.10 A<sup>a</sup></td>
<td>2.67 ± 0.01 A<sup>a</sup></td>
<td>3.38 ± 0.03 A<sup>a</sup></td>
</tr>
</tbody>
</table>

Mean values in columns with different lowercase letters are significantly different at *p* < 0.05, separately for germination and inactivation. Mean values in rows with different capital letters are significantly different at *p* < 0.05, separately for germination and inactivation.
Germination and inactivation of *Alicyclobacillus* sp.

Inactivation was also low, compared to the results obtained in our previous study (Sokołowska *et al*., 2012). In those experiments *A. acidoterrestris* TO-29/4/02 strain was used and inactivation achieved 5.0 log after 6 cycles at 50°C with 200 MPa, while 2.8 log inactivation was achieved after 30 min of continuous pressurization.

These different results may indicate large variations in the germination process under pressure, among *A. acidoterrestris* strains.

Influence of soluble solids content in apple juice on the germination and inactivation of *A. acidoterrestris* spores during pressurization. In this study pressure of 200 MPa at 50°C was used to investigate the influence of soluble solids content in apple juice on the germination of *A. acidoterrestris* spores.

As we expected after previous study (Sokołowska *et al*., 2013) The baroprotective effect of an increase in the solute concentration in apple juice on *A. acidoterrestris* spores was observed (Fig. 2). During 30 min pressurization of spores in concentrated apple juice (70.7°Bx), there was no significant germination and inactivation (*p* > 0.05). However, in juices with a soluble solids content of 35.7, 23.6 and 11.2°Bx, the spore germination was 2.40, 3.80 and 3.55 log after 30 min. In the same conditions inactivation was 1.51 log, 2.14 and 2.55 log, respectively. The results obtained demonstrate that the effect of high pressure combined with heat, against *A. acidoterrestris* spores, was highly dependent on the concentration of apple juice.

Similar results for the inactivation of spores were obtained by Lee *et al.* (2006). In the case of apple juice concentrate (70°Bx), treatment with high pressure (207, 414 and 621 MPa) at four different temperatures (22, 45, 71 and 90°C) showed no inactivating effect against the spores of *A. acidoterrestris* after 10 min of treatment. In diluted apple juice (17.5°Bx) *A. acidoterrestris* spore reductions was more than 5 log after 10 min at higher temperatures (71 and 90°C).

Increasing spore resistance with a greater soluble solids content may be explained by the lower *a*_w as well as by the protective effect of sugars. At low *a*_w germination may be incomplete as a result of water deficiency (Black *et al*., 2007). A baroprotective effect of sugars was also reported for spores (Raso *et al*., 1998).

Conclusions. The results of this study indicate that the treatment conditions, i.e. the level of pressure used and the temperature, time and mode of pressure application as well as, type and pH of the media and soluble solids content in apple juice considerably influenced the germination and inactivation of *A. acidoterrestris* spores. These factors should be kept in mind when designing moderate pressure treatments to assure the safety and stability of foods.

It was demonstrated that hydrostatic pressure treatment could induce germination and inactivation of *A. acidoterrestris* spores. A low pH favoured their germination and inactivation while a neutral pH suppressed inactivation. Increasing the process temperature strongly stimulated spore germination and inactivation. When the oscillatory mode was used the degree of germination and inactivation were slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.

These results indicate that high inactivation of *A. acidoterrestris* spores might be possible by HP treatment.
conducted at a moderately elevated temperature or followed by moderate heat treatment. This would allow better retention of the original properties, nutrients and bioactive components of the juices and make it possible to eliminate these spoilage bacteria.

Acknowledgments
The study was financed by the National Science Centre (Poland) Polish Ministry of Science and Higher Education under via grant No. 2011/01/B/NZ9/02537.

Literature
Germination and inactivation of Alicyclobacillus sp.

Introduction

The microbial population within the gastrointestinal (GI) tract of fish is rather dense, with number of microorganisms much higher than those in the surrounding water, indicating that the digestive tract provides favourable ecological niches for these organisms (Ringø et al., 1995). Some bacteria in the gastrointestinal tract are considered to be transient (allochthonous), whereas others exist as members of the established microbiota associated with the microvillus brush borders of enterocytes in proximal (PI) and distal regions (DI) of the GI tract of both the fish species. Ten (two each from the PI and DI of climbing perch and three each from the PI and DI of walking catfish) isolated bacterial strains were evaluated for extracellular protease, amylase and cellulase production quantitatively. All the bacterial strains exhibited high cellulolytic activity compared to amylolytic and proteolytic activites. Only two strains, CBH6 and CBH7, isolated from the DI of walking catfish exhibited high proteolytic activity. Maximum cellulase activity was exhibited by the strain, CBF2, isolated from the PI of climbing perch. Six most promising enzyme-producing adherent bacterial strains were identified by 16S rDNA gene sequence analysis. The strain ATH1 (isolated from climbing perch) showed high similarity to Bacillus amyloliquefaciens whereas, the remaining five strains (isolated from walking catfish) were most closely related to Bacillus licheniformis.

Abstract

Scanning electron microscopy (SEM) was used to define the location of epithelium-associated bacteria in the gastrointestinal (GI) tract of two Indian air-breathing fish, the climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus). The SEM examination revealed substantial numbers of rod shaped bacterial cells associated with the microvillus brush borders of enterocytes in proximal (PI) and distal regions (DI) of the GI tract of both the fish species. Ten (two each from the PI and DI of climbing perch and three each from the PI and DI of walking catfish) isolated bacterial strains were evaluated for extracellular protease, amylase and cellulase production quantitatively. All the bacterial strains exhibited high cellulolytic activity compared to amylolytic and proteolytic activites. Only two strains, CBH6 and CBH7, isolated from the DI of walking catfish exhibited high proteolytic activity. Maximum cellulase activity was exhibited by the strain, CBF2, isolated from the PI of climbing perch. Six most promising enzyme-producing adherent bacterial strains were identified by 16S rDNA gene sequence analysis. The strain ATH1 (isolated from climbing perch) showed high similarity to Bacillus amyloliquefaciens whereas, the remaining five strains (isolated from walking catfish) were most closely related to Bacillus licheniformis.

Keywords: 16S rDNA, air-breathing fish, enzyme production identification, GI tract bacteria identification, SEM
(SEM) and/or transmission electron microscopy (TEM) (Hellberg and Bjerkås, 2000; Lodemel et al., 2001; Ringø et al., 2001; Ringø et al., 2002; Ringø et al., 2003; Ghosh et al., 2010). An in depth electron microscopical study on gut-associated bacteria is highly relevant as the digestive tract is a potential port of entry of pathogens. One remarkable feature of the indigenous (autochthonous) microbiota of fish gut is that they are affected by certain situations including stress, antibiotic administration and even small dietary changes. The stability of the gut flora is therefore, an extremely important factor in the natural resistance of fish to infections produced by bacterial pathogens in the GI tract. To the authors' knowledge, no information is available on the mode of association of GI tract bacteria in Indian air-breathing fish. Therefore, the aim of the present study was to detect autochthonous gut microbiota in the GI tract of two Indian air-breathing fish, the climbing perch, Anabas testudineus and walking catfish, Clarias batrachus by SEM. Furthermore, the presently reported study also investigated the protease, amylase and cellulase-producing capacity of selected bacterial strains in the proximal (PI) and distal intestine (DI) of the two air-breathing fish species through quantitative enzyme assay and identification of the most promising isolated gut-associated bacteria by 16S rDNA gene sequencing.

Experimental

Materials and Methods

Fish examined. Two species of adult Indian air-breathing fish, the climbing perch, A. testudineus and walking catfish, C. batrachus were selected for the present study. The fish were obtained from a local fish farm near Santiniketan, West Bengal, India (23°41’30˝ N latitude and 87°41΄20˝ E longitude). The feeding habits (Jhingran, 1997), average live weight, relative intestinal length and average intestinal weight of the fish species examined are presented in Table I. Five adult specimens of each species were stocked separately in glass aquaria and starved for 48 hours in order to empty their alimentary tracts before dissection.

Tissue preparation for scanning electron microscopy. The selected portions of the GI tract were cut into two pieces, proximal and distal. The two segments were incised longitudinally. Each tissue segment was prepared step by step as follows: the tissue was fixed in cacodylate buffer (0.1 M) containing 2.5% glutaraldehyde for 1 h at 4°C, mucous was partially removed by washing the sample in heparinized saline (2 g heparin mixed in 20 ml of 0.67% NaCl), again washed with cacodylate buffer for four times (15 min each at 4°C) and kept in fresh buffer overnight at 4°C. Next day, the tissues were dehydrated through graded ethanol as follows: 50% (40 min), 70% (40 min), 90% (1 h) and absolute alcohol for 1 h. Thereafter, three consecutive changes were made in ethanol and amyl acetate in three different ratios 3:1, 2:2 and 1:3 (each for 30 min) and finally, tissues were kept in pure amyl acetate for 12 h. Critical point drying (CPD) was done in liquid nitrogen. The nitrogen was finally removed while in a super-critical state so that no gas-liquid interface is present within the sample during drying. The dry specimens were usually mounted on a specimen stub using an adhesive such as epoxy resin or electrically conductive double-sided adhesive tape followed by coating with gold particle in IB ion coater. Coated tissues were placed and observed with a Hitachi S530 Scanning Electron Microscope at an accelerating voltage of 20 kV. Images were taken and recorded digitally in Windows XP.

Isolation of gut associated bacterial flora. The GI tract of fish was dissected out aseptically inside the laminar air flow on an ice plate. It was cut into two parts, proximal (PI) and distal intestine (DI) and thoroughly rinsed three times with PBS (phosphate buffer saline, pH 7.2) to remove undigested food and allochthonous bacterial flora following the method described by Ringø (1993) before homogenization. After homogenization of the two parts separately, one ml of sample from each part were mixed in 0.9% of NaCl solution separately.

Table I

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Feeding habit*</th>
<th>Average live weight (g) (SD)</th>
<th>Average fish length (cm) (SD)</th>
<th>Relative intestinal length</th>
<th>Average intestinal weight (g) (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anabas testudineus</td>
<td>Insects, insect larvae, water fleas, smaller fish, vegetable debris etc.</td>
<td>98.4 (3.2)</td>
<td>16.4 (0.9)</td>
<td>0.43</td>
<td>7.2 (0.61)</td>
</tr>
<tr>
<td>Clarias batrachus</td>
<td>Insect larvae, shrimps, worms, small fish, organic debris etc. Carnivorous</td>
<td>138.2 (4.23)</td>
<td>18.3 (1.1)</td>
<td>0.50</td>
<td>9.2 (0.58)</td>
</tr>
</tbody>
</table>

* Jhingran (1997)
SD, Standard deviation (n = 5)
Relative intestinal length = length of intestine (cm) / total length of fish (cm)
(Das and Tripathi, 1991) and serial dilution was done (Beveridge et al., 1991). One hundred µl of sample from each test tube was spread on tryptone-soya agar plate separately and incubated for 36h at 34°C. The well separated colonies with distinct morphology were selected for pure culture. After pure culture bacteria were stored in TSA (tryptone soya agar) slant at 4°C.

Quantitative enzyme assay of the selected bacterial strains. For assessing te extracellular enzyme producing capacity of the bacterial strains, they were cultured in different broth media such as peptone-gelatin (g/l): beef extract 3 g, peptone 5 g and gelatin 4 g, starch (g/l): tryptone 2 g, KH₂PO₄ 4 g, Na₂HPO₄ 4 g, MgSO₄ 7H₂O 0.2 g, CaCl₂ 0.001 g, FeSO₄ 7H₂O 0.004 g, starch 10 g and carboxymethylcellulose (CMC) broth (g/l): tryptone 2 g, KH₂PO₄ 4 g, Na₂HPO₄ 4 g, MgSO₄ 7H₂O 0.2 g, CaCl₂ 0.001 g, FeSO₄ 7H₂O 0.004 g, CMC 10 for protease, amylase and cellulase, respectively. All the chemicals were supplied by HiMedia Laboratories Private Limited, Mumbai, India. For protease, amylase and cellulase enzyme production, the bacterial isolates were cultured in peptone-gelatin, starch and CMC medium, respectively, in a shaker incubator. After incubation, the broth was centrifuged at 8,000 × g and the supernatant was collected for enzyme assay. The assay of protease, amylase and cellulase were done according to Walter (1984), Bernfeld (1955), and Denison and Kohen (1977), respectively. Protein content of the supernatant was estimated by the method of Lowry et al. (1951). The specific enzyme activity was expressed as unit (U).

Identification of bacterial strains by 16S rDNA gene sequence analysis. Six most promising bacterial strains (one from A. testudineus and five from C. batrachus) were identified by 16S rRNA gene sequence analysis as described by Ringø et al. (2006). All sequences were aligned and analyzed using bioinformatics tool (Codon-code and Mega 4.0) for finding the closest homolog of the microbes using a combination of NCBI (National Centre for Biotechnology Information) GenBank and RDP (Ribosomal Database Project) database.

Results and Discussion

Mode of association. One of the criteria for testing autochthony of microorganisms in the GI tracts of fish is their association with the epithelial mucosa of the stomach, proximal or distal intestine (Ringø and Birkbeck, 1999). It has been suggested by several authors that electron microscopic (EM) examinations of the GI tract should be included as an important tool for investigating the microbial ecology of the gut ecosystem and determining the presence of autochthonous or allochthonous microbiota (for review, see Ray et al., 2012). In the present study, scanning electron microscopy (SEM) revealed sporadic colonization of autochthonous bacterial cells in the GI tract of both the fish species examined. Substantial association of rod-shaped bacterial cells on the tips and within the enterocyte microvilli in both PI and DI are demonstrated by SEM (Figs. 1–7). Figure 1 shows the association of rod-shaped bacteria in the apical aspects of the enterocytes in the PI of C. batrachus. Previous SEM and/or TEM elevations also demonstrated rod-shaped bacteria associated with the microvilli in the GI tract of rainbow trout, Oncorhynchus mykiss (Lesel and Pointel, 1979), Atlantic wolffish, Anarhichas lupus (Hellberg and Bjerkås, 2000), Arctic char, Salvelinus alpinus (Ringø et al., 2001) and rohu, Labeo rohita (Ghosh et al., 2010). SEM investigation also revealed that the bacterial colonies attached in the intestinal fold were associated with mucous and the attachment of bacteria was clearly visible in the mucous removed intestinal folds (Figs. 2, 3 and 4). Similarly, attachment of autochthonous bacteria in GI tract of A. testudineus was also very clear (Figs. 5, 7). In the PI of A. testudineus, the luminal end of one bacterium is found protruding above the level of the microvilli (Fig. 6). In the DI of A. testudineus, numerous small pores are discernable (Fig. 8). These pores might be due to emptying mucous-producing goblet cells. Bacterial adhesion is a cell-surface interaction phenomenon which makes it ideal for examination by SEM (Knutton, 1995). Several factors are reported to influence adhesion and colonization of the microbiota within the GI tract. These are: (a) gastric acidity, (b) bile salts, (c) peristalsis, (d) digestive enzymes, (e) immune response and (f) indigenous bacteria and the antibacterial compounds produced by them (Ringø et al., 2003). Ringø et al. (2007) reported that both bacterial cells and epithelial cells are negatively charged that prevent closer association of bacteria on the epithelial surface. SEM and classical microbiology have been used to investigate bacteria in different regions of the GI tract of rainbow trout, O. mykiss (Lesel and Pointel, 1979). In the presently reported study, in some cases, bacterial cells are seen to remain associated with the folds of the intestinal villi wrapped by mucous. This finding corroborates the observation made by Ghosh et al. (2010) in the GI tract of L. rohita. On the other hand, in the PI of A. testudineus, the bacteria are found to protrude above the level of microvilli as reported in Arctic char, S. alpinus by Ringø et al. (2001). The mechanisms involved in adhesion of adherent bacteria in the GI tract seem to include adhesive factor(s), such as adhesion (Krovacek et al., 1987), salinity and pH (Balebona et al., 1995) and cell surface hydrophobicity (Parker and Munn, 1984; Bruno, 1988). In addition, receptor-specific interactions, such as pili-like structures, specific receptors on enterocytes such as sugar residues have been reported to be involved in mammalian models (Knutton, 1995).
Enzyme producing ability. Out of 21 strains isolated from the GI tract of the two fish species, 10 stains (2 each from the PI and DI of *A. testudineus* and 3 each from the PI and DI of *C. batrachus*) were the most promising with regard to enzyme producing ability. The results of quantitative enzyme activity exhibited by the bacterial isolates are presented in the Table II. All the bacterial strains exhibited high cellulase activity compared to amylase and protease activities. The strain CBF2 isolated from the PI of *C. batrachus* exhibited the highest cellulolytic activity (15.34 ± 0.11 U) followed by CBF4 and CBH5 (10.66 ± 0.24 U and 10.42 ± 0.073 U, respectively) isolated from the PI and DI, respectively of the same fish. The bacterial strain ATH1 isolated from DI of *A. testudineus* was also a good cellulase producer (1.92 ± 0.018 U). The presence of huge population of cellulolytic bacteria and their active role in extracellular cellulase production in fish has been confirmed in several investigations (Das and Tripathi, 1991; Saha and Ray, 1998; Bairagi et al., 2002; Saha et al. 2006; Kar and Ghosh, 2008; Mondal et al., 2008; 2010; Ray et al., 2010). Considerable cellulolytic bacterial population has also been reported in the digestive tract in carnivorous murrel, *Channa punctatus* and stinging catfish, *Heteropneustes fossilis* (Kar and Ghosh, 2008; Banerjee et al., 2013). Niederholzer and Hofer (1979) detected highest levels of cellulase activity in roach, *Rutilus rutilus*, and rudd, *Scardinius erythrophthalmus*, feeding on zooplankton and arthropods. Lindsay and Harris (1980) recorded moderate or high cellulase activity in gut contents of most “invertivores” feeding almost exclusively on invertebrates compared to omnivorous and piscivorous fish and concluded that cellulase activity in fishes is the direct result of ingestion of invertebrates containing cellulase or a cellulolytic microflora. Luczkovich and Stellwag (1993) also supported the hypothesis put forward by Lindsay and Harris (1980) and opined that cellulolytic bacteria present in the invertebrates consumed by pinfish, *Lagodon rhomboides* might have served as a source for the establishment and maintenance of the microbial flora. Our results corroborate these hypotheses and may explain
high cellulase activity in all the bacterial strains isolated from the GI tract of both the fish species studied which feed exclusively on invertebrates. In experimental conditions, cellulose was found to be poorly utilized by fish (Leary and Lovell, 1975; Anderson et al., 1984; Shiau et al., 1989; Hilton et al., 1989). The results

Table II
Quantitative extracellular enzyme activities of the selected bacterial strains isolated from the GI tract of two air-breathing fish species

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Region</th>
<th>Strain designation</th>
<th>Protease (U)</th>
<th>Amylase (U)</th>
<th>Cellulase (U)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anabas testudineus</td>
<td>Proximal intestine</td>
<td>ATF4</td>
<td>0.51 (± 0.016)</td>
<td>0.02 (± 0.006)</td>
<td>0.71 (± 0.016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATF5</td>
<td>0.69 (± 0.011)</td>
<td>0.46 (± 0.012)</td>
<td>1.80 (± 0.021)</td>
</tr>
<tr>
<td></td>
<td>Distal intestine</td>
<td>ATH1</td>
<td>0.90 (± 0.019)</td>
<td>1.63 (± 0.13)</td>
<td>1.92 (± 0.018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ATH2</td>
<td>0.72 (± 0.02)</td>
<td>0.02 (± 0.004)</td>
<td>1.14 (± 0.011)</td>
</tr>
<tr>
<td>Clarias batrachus</td>
<td>Proximal intestine</td>
<td>CBF2</td>
<td>0.83 (± 0.026)</td>
<td>0.04 (± 0.01)</td>
<td>15.38 (± 0.11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBF3</td>
<td>0.10 (± 0.015)</td>
<td>0.08 (± 0.02)</td>
<td>4.58 (± 0.14)</td>
</tr>
<tr>
<td></td>
<td>Distal intestine</td>
<td>CBH5</td>
<td>0.16 (± 0.016)</td>
<td>0.14 (± 0.025)</td>
<td>10.42 (± 0.073)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBH6</td>
<td>1.13 (± 0.065)</td>
<td>0.16 (± 0.015)</td>
<td>4.58 (± 0.05)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CBH7</td>
<td>1.82 (± 0.081)</td>
<td>0.06 (± 0.01)</td>
<td>6.51 (± 0.08)</td>
</tr>
</tbody>
</table>

Data are means ± SE of three determinations.

1 µg of tyrosine liberated/mg protein/min; 2 µg of maltose liberated/mg protein/min; 3 µg of glucose liberated/mg protein/min.
of those studies might raise questions regarding the role of cellulolytic bacteria in utilization of cellulose in fish. However, the presence of cellulolytic bacteria alone does not provide evidence that fish can utilize plant materials and/or cellulose. Symbiotic microbial enzymes, which hydrolyse cellulose, also generally require relatively long digestion times (Kristensen, 1972). So, in ruminant animals, a large fermentation/digestion chamber is present with a slow transfer rate to allow sufficient time and space for effective digestion. As fish do not possess a specialized chamber for bacterial fermentation, cellulose is sometimes poorly utilized by fish in spite of the presence of symbiotic cellulolytic bacteria. On the other hand, highest proteolytic activity was recorded in the bacterial strain CBH7 and CBH6 isolated from DI of *C. batrachus* (1.82 ± 0.081 U and 1.13 ± 0.065 U, respectively) followed by ATH1 isolated from DI of *A. testudineus* (0.9 ± 0.019 U). There are some published reports on protease production by fish GI tract bacteria (Skrodenytė-Arbačiauskienė, 2007; Ray *et al.*, 2010; Askarian *et al.*, 2012; Banerjee *et al.*, 2013). Bairagi *et al.* (2002), however, quantified the proteolytic activity in the bacterial strains isolated from nine freshwater teleosts. They recorded highest proteolytic activity in the bacterial strain TP3A, isolated from the gut of *Oreochromis mossambica*. While, Mondal *et al.* (2008) and Ray *et al.* (2010) also reported high proteolytic activity in the bacterial strains isolated from the DI of *Labeo calbasu* and three Indian major carps, *Catla catla*, *Labeo rohita* and *Cirrhinus mrigala*. Extracellular protease activity in these bacterial isolates indicates that there exists a definite source of microbial protease apart from the endogenous protease in fish GI tract which have contribution in host digestion process. In the present study, most of the isolated bacterial strains were not good amylase producers except ATH1 (1.63 ± 0.13 U), isolated from DI of *A. testudineus*. Kar and Ghosh (2008), however, reported amylase-producing bacteria in the digestive tracts of rohu (*L. rohita*) and murrel (*C. punctatus*). Mondal *et al.* (2008), however, could not detect amylolytic bacteria in the GI tract of carnivorous climbing perch, *A. testudineus*. They opined that amylase production by GI tract bacteria in herbivorous fish is much higher than that in carnivorous fish. Das and Tripathi (1991) reported high amylase activity in the gastrointestinal tract of grass carp (*Ctenopharyngodon idella*) which appeared to be the result of its omnivorous feeding habit. They are of opinion that there is a possibility of introduction of these enzyme producing microflora in fish GI tracts along with the food ingested, but, whether they form a persistent population in the gut is doubtful. Since, the amylolytic bacteria have been detected in fish GI tract after 48 h of starvation in the present study, it seems that some of the flora form a persistent population.

Identification of bacterial strains. All the strains isolated from the GI tract of both the fish species are Gram-positive, rod shaped aerobic bacteria with irregular configuration. Out of ten bacterial strains, six most promising ones (one from *A. testudineus* and five from *C. batrachus*) were identified by 16S rDNA sequence analysis (Table III). The 16S rDNA is the most conserved (least variable) gene in all cells. For this reason, genes that encode the rRNA (rDNA) have been used extensively to determine taxonomy, phylogeny (evolutionary relationships), and to estimate rates of species divergence among bacteria. The bacterial strain ATH1 isolated from the DI of *A. testudineus* showed 99% similarity to *Bacillus amyloliquefaciens* (accession no. HG328254.1). *B. amyloliquefaciens* is a Gram-positive, rod shaped spore forming bacterium. This species of *Bacillus* has been isolated from different sources such as, fish gut (Ghosh *et al.*, 2010), brackishwater sediment (Cao *et al.*, 2011), plant (Chen *et al.*, 2009) and oil contaminated soil (Liu *et al.*, 2012). Due to high level of amylase production, it is considered to be a commercial producer in different industries (Deb *et al.*, 2013). The remaining five bacterial strains isolated from the GI tract of *C. batrachus* were close to *Bacillus licheniformis* (accession no. HQ005269.1). Different strains of *Bacillus* have been identified from the GI tract of fish (Ringø, 2008). In the present study, all the 6 identified strains belong to genus *Bacillus*. One of our strains (ATH1) showed 99% similarity to *B. amyloliquefaciens* (accession no. HG328254.1). *B. licheniformis* is a Gram-positive, mesophilic spore forming bacterium, previously reported in the GI tract of different freshwater fish species (Roy *et al.*, 2009; Mondal *et al.*, 2010; Banerjee *et al.*, 2013; Dan and Ray, 2014). *B. licheniformis* from different sources has been reported to be a valuable source for protease production (Asokan and Jayanthi, 2010; Degering *et al.*, 2012; Sangaralingam *et al.*, 2012; Banerjee *et al.*, 2013). Due to high protease producing capacity, *B. licheniformis* is used in different industries (Degering *et al.*, 2012).

Table III

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Closest relative (obtained from BLAST search)</th>
<th>Similarity (%)</th>
<th>Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATH1</td>
<td>Bacillus amyloliquefaciens</td>
<td>99%</td>
<td>HG328254.1</td>
</tr>
<tr>
<td>CBF2</td>
<td>Bacillus licheniformis</td>
<td>97%</td>
<td>HQ005269.1</td>
</tr>
<tr>
<td>CBF4</td>
<td>Bacillus licheniformis</td>
<td>99%</td>
<td>HQ005269.1</td>
</tr>
<tr>
<td>CBH5</td>
<td>Bacillus licheniformis</td>
<td>98%</td>
<td>HQ005269.1</td>
</tr>
<tr>
<td>CBH6</td>
<td>Bacillus licheniformis</td>
<td>98%</td>
<td>HQ005269.1</td>
</tr>
<tr>
<td>CBH7</td>
<td>Bacillus licheniformis</td>
<td>100%</td>
<td>HQ005269.1</td>
</tr>
</tbody>
</table>
Gut bacteria in Indian air-breathing fish

Conclusions. The results of the present study provide evidence that autochthonous bacteria colonize in both the PI and DI of the two air-breathing fish species studied. The investigation further confirms that there is also a distinct microbial source of digestive enzymes (protease, amylase and cellulase) apart from the endogenous sources in fish GI tracts. Characterization and identification by 16S rDNA sequence analysis revealed that all the strains belong to the genus Bacillus. However, to present more reliable information on the gut microbiota in fish, several methods, such as random amplified polymorphic DNA, denaturing gradient gel electrophoresis (DGGE), fluorescence in situ hybridization (FISH), and confocal microscopy have been used to identify and detect the microbial community in the GI tracts of fish. These techniques should be used in future studies while evaluating the bacterial community in the GI tract of Indian fishes.

Acknowledgements

We are grateful to the University Grants Commission (UGC), New Delhi for financial support. Thanks are due to USIC, University of Burdwan, Burdwan, West Bengal, India for providing SEM facilities and important suggestions for tissue preparation.

Literatures

Physiology and Molecular Phylogeny of Bacteria Isolated from Alkaline Distillery Lime

AGNIESZKA KALWASIŃSKA*, TAMÁS FELFÖLDI, MACIEJ WALCZAK and PRZEMYSŁAW KOSOBUCKI

1 Nicolaus Copernicus University in Toruń, Faculty of Biology and Environmental Protection, Department of Environmental Microbiology and Biotechnology, Toruń, Poland
2 Eötvös Loránd University, Department of Microbiology, Budapest, Hungary
3 Nicolaus Copernicus University in Toruń, Faculty of Chemistry, Chair of Environmental Chemistry and Bioanalytics, Toruń, Poland

Submitted 23 March 2015, revised 17 June 2015, accepted 13 July 2015

Abstract

This paper presents the results of the research on the number, taxonomic composition, and biochemical properties of bacterial strains isolated from the alkaline Solvay distillery lime, deposited at the repository in Janikowo (central Poland). Fifteen strains out of 17 were facultative alkaliphiles and moderate halophiles, and two were alkalitolerants and moderate halophiles. The number of aerobic bacteria cultured in alkaline lime was approximately 10^5 CFU ml$^{-1}$, and the total number of bacteria was 10^7 cells g$^{-1}$. According to 16S rRNA gene sequence analysis, nine strains belonged to the genus *Bacillus*, six to the genus *Halomonas*, one to the genus *Planococcus*, and one to the genus *Microcella*. Strains that hydrolyse starch and protein were the most numerous. Esterase (C4) and esterase lipase (C8) were detected in the majority of bacterial strains. Twelve strains exhibited α-glucosidase activity and nine, naphtol-AS-BI-phosphohydrolase activity. The present study proves that alkaliphilic bacteria of this type may constitute a source of potentially useful extremozymes.

Key words: *Bacillus* sp., *Halomonas* sp., alkaline solvay distillery lime, alkaliphiles, halophiles

Introduction

Extreme environments constitute a habitat for microorganisms with unique biochemical properties, useful for the industries, medicine, and environmental protection. In recent years the knowledge of extremophilic microorganisms which populate ecosystems generally considered unusual, has improved dramatically (Quazi, 2013). The main reason for the extensive research on extremophiles is the biotechnological potential of their cells and metabolites. These microorganisms are source of several biotechnologically relevant enzymes and biomolecules, e.g. cellulases, amylases, and ectoine (Jones *et al*., 1998; Trotsenko and Khmelenina, 2002; Grant and Heaphy, 2010).

Microorganisms populating highly alkaline environments constitute a diversified group and can be divided into alkaliphiles and alkalitolerants. Alkaliphiles are capable of living in the environment with a pH of 10 and higher, thriving, however, in the environment with a pH of around 9 (their optimum pH), but incapable of surviving in the environment with a pH of 7 or lower. On the other hand, alkalitolerants are capable of living in the environment with a pH higher than 10, although they thrive in environments with pH of 7 (their optimum pH is neutral) (Krutwich, 1986).

Alkaliphiles are found in natural alkaline environments such as saline soda lakes and ponds of East Africa (Foti *et al*., 2006), Europe (Gerasimenko *et al*., 2003), Asia (Antony *et al*., 2013), Ca$^{2+}$ alkaline springs of Near East, and soda deserts of North America (Duckworth *et al*., 1996). Marine environments contain many alkali-tolerant bacteria and usually a smaller number of alkaliphiles (Ntougias *et al*., 2006; Tamura *et al*., 2013). Alkaliphiles have also been isolated from a number of alkaline wastes, by-products from food processing, e.g. potato processing plant effluents (Collins *et al*., 1983), olive and maize processing wastewater (Ntougias *et al*., 2006; Sanchez-Gonzalez *et al*., 2011).

Although alkaliphiles have been thoroughly studied, no information has been found about their isolation from a lime sludge, a by-product in Solvay soda process.
Alkaline distillery lime deposited in sludge ponds on the premises of the manufacturing plant in Inowrocław and Janikowo (central Poland) is a potential habitat of alkaliphilic and alkalihalotolerant microorganisms due to its highly alkaline character (pH from 9.0 to 11.4) and increased salt concentration (up to 9% in dry matter). The main component of the alkaline lime is calcium carbonate (above 90%) and the remaining include amorphous calcium hydroxide (6%) silicon dioxide, magnesium, aluminum and chlorides (Ziółkowska et al., 2013). Owing to strong alkaline properties, distillery lime increases the pH of aqueous solutions up to 11–12 (Jeliński et al., 2011).

The aim of this research was to determine the abundance, physiology and molecular phylogeny of extremophilic microbiota originating from alkaline distillery lime.

Experimental

Materials and Methods

Study area. Alkaline distillery lime has been deposited in sludge ponds in Janikowo (central Poland, Kuyavia) since 1957. The repository of alkaline distillery lime, composed of several ponds separated by causeways, covers an area of 200 ha and has the capacity of over 13,000,000 Mg. It rises up to 16 m above the ground level (Regional Inspectorate for Environmental Protection, 2013).

Sampling sites. Alkaline distillery lime was collected in September 2012 from three ponds of different salinity: sampling site S (slightly saline), M (moderately saline), H (highly saline). Samples were collected using a Total Groundcare soil sampler (Zarzecze, Poland) from the surface layer of the deposits (depth of 0–20 cm) from plots with an area of 25 m². Placed in sterile glass jars, they were transported to the laboratory in a portable ice bag at the temperature below 4°C. In the laboratory, the samples from a particular sampling site were mixed thoroughly, tenfold serial dilutions were prepared and subcultured in a medium containing (g l⁻¹) glucose 4, yeast extract 1, MgSO₄·7H₂O 0.5, KCl 0.01, and NaCl 30, supplied with 4% of sodium formate (Merck, Darmstadt, Germany) after distillation in Gerhardt Vapodest 20 system (Gerhardt, Königswinter, Germany). Ammonia nitrogen concentration was measured using Nessler method (Spectroquant Merck SQ 118, Darmstadt, Germany), after distillation in Gerhardt Vapodest 20 system (Gerhardt, Königswinter, Germany). Nitrate concentration was determined using spectrophotometric method (Spectroquant Merck SQ 118, Darmstadt, Germany) after extracting nitrate from the sample using 2.0 M HCl. Total phosphorus content was measured with the spectrophotometric molybdenum blue method (Spectroquant Merck SQ 118, Darmstadt, Germany) after sample digestion with aqua regia.

Isolation and enumeration of bacteria. To isolate bacterial populations from alkaline lime, 10 g from the three mixed samples was added into 90 ml of NaCl solution (concentration corresponding to the chloride content in a given sample). The mixtures were blended thoroughly, tenfold serial dilutions were prepared and 0.1 ml of each suspension was spread onto three replicate plates with the appropriate culture media. Extracts from the alkaline lime (100 g dissolved in 1 l of distilled water, mixed for 20 min, filtered and adjusted to pH 7 and 11 using the appropriate buffer solutions according to Ntougias et al. (2006), were solidified with agar and used to estimate the number of cultivable bacteria. All plates were incubated up to 7 days at 25°C. The number of grown colonies was expressed as colony forming units (CFU) per gram (dry weight) of alkaline lime. To prepare bacterial strain collection intended for further physiological and taxonomy studies, single colonies appearing on isolation plates were subcultured in a medium containing (g l⁻¹) glucose 5, yeast extract 1, MgSO₄·7H₂O 0.01, and NaCl 30, supplied with appropriate buffer system. The isolation was based on the following characteristics of bacterial colonies: color, size, shape, and prevalence on the medium.

The total number of bacteria in alkaline lime was determined by acidine orange direct count (AODC) technique after Hobbie et al. (1977). For this purpose, 1 g of alkaline lime (fixed with formaldehde – 3.8% v/v final concentration, sterilized with MF-Millipore Membrane Filters, 0.22 µm) was placed in glass tubes containing 9 ml of filter-sterilized citric acid solution (final concentration 0.6 M), added to dissolve calcium carbonate in the samples. The suspensions were vortexed for 2 min. Triplicate subsamples were stained with titration with silver nitrate (Radojevic and Bashkin, 2006). Total organic carbon (TOC) was measured in TOC 5000 analyzer combined with the SSM-5000A module (Shimadzu, Kyoto, Japan). TOC was calculated by subtracting inorganic carbon concentration (IC) from total carbon concentration (TC). Organic nitrogen concentration was calculated by subtracting ammonia nitrogen from total Kjeldahl nitrogen (TKN). TKN was determined in a Turbotherm system (Gerhardt, Königswinter, Germany). Ammonia nitrogen concentration was measured using Nessler method (Spectroquant Merck SQ 118, Darmstadt, Germany), after distillation in Gerhardt Vapodest 20 system (Gerhardt, Königswinter, Germany). Nitrate concentration was determined using spectrophotometric method (Spectroquant Merck SQ 118, Darmstadt, Germany) after extracting nitrate from the sample using 2.0 M KCl. Total phosphorus content was measured with the spectrophotometric molybdenum blue method (Spectroquant Merck SQ 118, Darmstadt, Germany) after sample digestion with aqua regia.

Chemical analysis of distillery lime. Gravimetric moisture of alkaline lime was determined with the method of mass loss in drying (Radojevic and Bashkin, 2006). Before the analysis, solid and dried samples were hammered to reduce agglomeration, then disintegrated and homogenized in a roller mill. The pH values of the samples were measured in an aqueous suspension using a deposit: solution ratio of 1 : 1 (w/v). Elmetron CPC-501 pH meter (Zabrze, Poland) was used for pH determination in the aqueous phase. The concentration of chloride ions was determined by argentometric analysis using the argentometric method.
acridine orange (final concentration 0.01%) for 3 min (Hobbie et al., 1977). At least 100 cells or all cells in 100 fields of view were counted under a microscope (Nikon Eclipse E200, Japan) for each slide.

Statistical analysis was conducted using Statistica 6.0. software and analysis of variance (ANOVA). The impact of two independent factors (pH and chloride concentration) on the number of cultivable bacteria and the total number of bacteria in alkaline distillery lime was compared. ANOVA was followed by Tukey’s test (HSD).

Physiological studies

Cell morphology and the purity of cultures were checked routinely using a Nikon light microscope (Japan). All experiments were performed at 25°C, unless stated otherwise. Alkaliphilic/alkalitolerant strains were maintained and grown routinely on alkaline media (Ntougias et al., 2006), composed of the nutritional base described above, 30 g l⁻¹ NaCl, 0.1 mM MgSO₄ and a buffer (Na₂CO₃·K₂HPO₄), at pH 10.

Bacterial tolerance to salt was investigated in media containing the nutritional base and 0.1 mM MgSO₄ with different NaCl concentrations (0, 30, 50, 80, 100, 150, 200 and 250 g l⁻¹ NaCl). Bacterial growth was measured as optical density at 600 nm after 7 days.

Nutrient media containing specific substrates (sodium caseinate, olive oil, starch, carboxymethyl cellulose), all at a concentration of 0.5% (w/v), 0.1 mM MgSO₄ and 0.05 g l⁻¹ yeast extract were used to evaluate the organic substrate utilization by the isolates. Frazier reagent (HgCl₂ 12 g, distilled water, 80 ml, concentrated HCl, 20 ml) was used to detect protein hydrolysis, Rhodamine B (1 mg ml⁻¹, Sigma, added to the medium after sterilization, followed by incubation and UV irradiation) to evaluate fat hydrolysis, Gram iodine to assess starch hydrolysis, and 0.1% Congo red and 1 M NaCl to determine cellulose hydrolysis. Alkaliphilic/alkalitolerant strains were investigated at pH 10 and 3% NaCl. The medium containing NaCl (pH 10) was used to investigate the growth temperature range (15, 20, 30, 40, 50°C). Anaerobic growth was tested using the BioMerieux GENbox anaerobic system at 25°C for 7 days. The ability of individual isolates to synthesize constitutive enzymes was studied using API ZYM system (BioMerieux, France).

Identification of bacterial strains based on the 16S rRNA gene

Total genomic DNA was extracted from the strains using the G-Spin Total DNA Extraction Kit (iNtRON Biotechnology, Sungnam, Korea) following the instructions given by the manufacturer. The 16S rRNA gene was amplified by PCR in a reaction mixture containing 1 U DreamTaq DNA polymerase (Thermo Scientific, Waltham, MA, USA), 0.2 mM dNTP mixture (Thermo Scientific), 1 × DreamTaq buffer (Thermo Scientific), 0.325 µM of primers 27F 5’-AGA GTT TAC CTT GTT ACG ACT T-3’ (Polz and Cavanaugh, 1998), 10 µg BSA (Thermo Scientific) and 1 µl genomic DNA in a total volume of 25 µL. Thermal profile consisted of an initial denaturation at 98°C for 5 min, 32 cycles of denaturation at 94°C for 0.5 min, annealing at 48°C for 0.5 min and extension at 72°C for 1.5 min, and a final extension at 72°C for 10 min. PCR amplicons were checked under UV excitation on a 1 w/v% agarose gel stained with GR Safe DNA Stain (Innovita, Gaithersburg, MD, USA). PCR product purification, sequencing reaction with primer 27F and capillary electrophoresis were performed by the LGC Genomics GmbH (Berlin, Germany). Manual correction of automatic base calling on chromatograms was carried out using the Chromas software v 1.45 (Technelysium, Brisbane, QLD, Australia). Nucleotide sequences obtained in this study were submitted to GenBank under the accession numbers KJ870238-KJ870254.

Closest related species were identified with the EzTaxon online tool (Kim et al., 2012). Sequence alignment with sequences retrieved from GenBank was performed with the SINA Aligner (Pruesse et al., 2012). Phylogenetic analysis including the search for the best-fit model was conducted with the MEGA 6.0 software (Tamura et al., 2013).

Results

All three types of distillery lime had alkaline pH (ranging from 10.2 to 11.3), measured in a water suspension (Table I). Chloride content ranged from 2.88% to 45.2 ± 4.1%

<table>
<thead>
<tr>
<th>Sample</th>
<th>pH</th>
<th>Chlorides (%)</th>
<th>Water content (%)</th>
<th>Total organic carbon (%)</th>
<th>Organic nitrogen (%)</th>
<th>Nitrates (%)</th>
<th>Total phosphorous (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>10.2 ± 0.3</td>
<td>2.88 ± 0.16</td>
<td>62.3 ± 5.5</td>
<td>0.34 ± 0.11</td>
<td>0.001</td>
<td>< LOD</td>
<td>0.006 ± 0.0001</td>
</tr>
<tr>
<td>M</td>
<td>10.5 ± 0.2</td>
<td>4.57 ± 0.33</td>
<td>42.3 ± 3.7</td>
<td>nm</td>
<td>nm</td>
<td>nm</td>
<td>nm</td>
</tr>
<tr>
<td>H</td>
<td>11.3 ± 0.4</td>
<td>6.40 ± 0.46</td>
<td>45.2 ± 4.1</td>
<td>0.32 ± 0.09</td>
<td>0.001</td>
<td>< LOD</td>
<td>0.008 ± 0.001</td>
</tr>
</tbody>
</table>

LOD – limit of detection, nm – not measured
to 6.40% and the water content ranged from 42.3% to 62.3%. The samples contained low amount of nutrients because total organic carbon content was low (only 0.34%). The organic nitrogen and total phosphorous contents were 0.001% and ~0.007%, respectively. The nitrate concentration was below the detection limit.

Two-way analysis of variance showed that both the number of cultivable microorganisms and the total number of bacteria in alkaline lime depended on its pH and chloride concentration (p < 0.05).

The results indicate that bacterial number at pH 7 ranged from 2.16 ± 0.37 CFU ∙ 10⁵ g⁻¹ dw in highly saline samples and from 14.22 ± 1.16 CFU ∙ 10⁵ g⁻¹ dw in slightly saline samples (Table II); at pH 11 these values ranged from 1.06 ± 0.21 CFU ∙ 10⁵ g⁻¹ dw in highly saline samples and from 2.74 to ± 1.07 CFU ∙ 10⁵ g⁻¹ dw in slightly saline samples.

Nine strains were isolated from the highly saline samples (marked H, strains H5-H13), four from the moderately saline samples (marked M, strains M1-M4), and four from the slightly saline samples (marked S, strains S14-S17).

The total number of bacteria determined by direct cell count ranged from 2.16 ± 0.93 cells ∙ 10⁷ g⁻¹ dw in the highly saline samples to 18.29 ± 0.89 cells ∙ 10⁷ g⁻¹ dw in the moderately saline samples (Table III).

The majority of the bacterial isolates stained Gram-positive. Strains M2, M3, M4, H12, S14 and S15 were Gram-negative, which corresponds to the results of the molecular taxonomic identification. Strains M1, H6-H10 and H13 formed endospores. All strains were strictly aerobic (except strain S16) and oxidase-positive.

Physiological characteristics of bacteria isolated from alkaline distillery lime are presented in Table III. Nine bacterial strains (M1-M3, H5, H7, H8, H10, H11, H13) were able to grow at pH 7–11, and six (M4, M9, H12, S15-S17) at pH 6–11. Efficient growth of most strains was observed at the highest tested pH values and their optimal growth at pH 9–10 (facultative alkali-liphiles). Only two strains (H6 and S14) had optimum pH of 7, but showed tolerance of pH values of up to 11 (alkalitolerant bacteria).

Ten isolates tolerated up to 200 g l⁻¹ NaCl, seven tolerated concentrations of up to 150 g l⁻¹ NaCl. Only one bacterial strain (S16) had low salt tolerance (up to 50 g l⁻¹ NaCl). Optimum salt concentration for growth of all the isolates were between 30 and 50 g l⁻¹ NaCl therefore they can be regarded as moderate halophiles.

Table II

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cultivable bacteria (CFU ∙ 10⁵ g dry mass)</th>
<th>Total number of bacteria (cells ∙ 10⁷ g dry mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH = 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>14.22 ± 1.19</td>
<td>4.39 ± 1.72</td>
</tr>
<tr>
<td>M</td>
<td>4.59 ± 0.36</td>
<td>18.29 ± 0.89</td>
</tr>
<tr>
<td>H</td>
<td>2.16 ± 0.37</td>
<td>2.16 ± 0.93</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Isolate</th>
<th>pH range</th>
<th>NaCl (% w/v)</th>
<th>Temperature (°C)</th>
<th>Degradation of organic compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Starch</td>
</tr>
<tr>
<td>M1</td>
<td>7–11 (9)</td>
<td>0–20 (5)</td>
<td>5–40 (30)</td>
<td>+15</td>
</tr>
<tr>
<td>M2</td>
<td>6–11 (7)</td>
<td>0–20 (5)</td>
<td>5–40 (30)</td>
<td>–</td>
</tr>
<tr>
<td>M3</td>
<td>7–11 (9)</td>
<td>3–15 (5)</td>
<td>5–40 (20)</td>
<td>–</td>
</tr>
<tr>
<td>M4</td>
<td>6–11 (9)</td>
<td>0–20 (5)</td>
<td>10–40 (30)</td>
<td>–</td>
</tr>
<tr>
<td>H5</td>
<td>7–11 (9)</td>
<td>0–20 (3)</td>
<td>5–50 (30)</td>
<td>+20</td>
</tr>
<tr>
<td>H6</td>
<td>7–11 (9)</td>
<td>0–15 (3)</td>
<td>5–40 (20)</td>
<td>+12</td>
</tr>
<tr>
<td>H7</td>
<td>7–11 (11)</td>
<td>0–20 (5)</td>
<td>5–40 (20)</td>
<td>+12</td>
</tr>
<tr>
<td>H8</td>
<td>7–11 (9)</td>
<td>0–15 (3)</td>
<td>5–40 (30)</td>
<td>+6</td>
</tr>
<tr>
<td>H9</td>
<td>7–11 (10)</td>
<td>3–15 (3)</td>
<td>5–40 (20)</td>
<td>+18</td>
</tr>
<tr>
<td>H10</td>
<td>7–11 (10)</td>
<td>0–20 (3)</td>
<td>5–40 (20)</td>
<td>–</td>
</tr>
<tr>
<td>H11</td>
<td>7–11 (9)</td>
<td>0–20 (5)</td>
<td>5–50 (30)</td>
<td>+16</td>
</tr>
<tr>
<td>H12</td>
<td>7–11 (7)</td>
<td>0–20 (5)</td>
<td>5–40 (20)</td>
<td>+/-</td>
</tr>
<tr>
<td>H13</td>
<td>7–11 (9)</td>
<td>0–15 (3)</td>
<td>5–40 (30)</td>
<td>+18</td>
</tr>
<tr>
<td>S14</td>
<td>6–11 (7)</td>
<td>0–15 (5)</td>
<td>10–40 (20)</td>
<td>+14</td>
</tr>
<tr>
<td>S15</td>
<td>6–11 (9)</td>
<td>0–20 (3)</td>
<td>5–40 (30)</td>
<td>–</td>
</tr>
<tr>
<td>S16</td>
<td>6–11 (10)</td>
<td>0–5 (9)</td>
<td>20–30 (30)</td>
<td>–</td>
</tr>
<tr>
<td>S17</td>
<td>6–11 (9)</td>
<td>0–15 (3)</td>
<td>10–40 (30)</td>
<td>–</td>
</tr>
</tbody>
</table>

* – marginal growth
The optimum temperature for growth of the studied isolates (mesophiles) ranged from 20 to 30°C. However, most strains (except M4, S14, S16 and S17) could grow at 5°C.

Strains capable of hydrolyzing starch were the most numerous. All strains isolated from highly saline lime (H5-H13, except H10), plus strains M1 and S14 hydrolyzed this polysaccharide. Seven bacterial strains (M1, H5, H7, H9, H11, S17, H18) hydrolyzed protein, four (H5, H7, H11, S16) hydrolyzed fat while none hydrolyzed cellulose.

The results of the APIZYM tests (Table IV) confirm the activity of 15 enzymes out of 19 which were tested. Cystine arylamidase, β-galactosidase, α-mannosidase, and α-fucosidase were not detected. Esterase (C4) and esterase lipase (C8) were detected in all bacterial strains except H8.

Twelve strains exhibited α-glucosidase activity (M1, M4, H5, H6, H9-H13, S14, S16, S17). Nine strains exhibited naphthol-AS-BI-phosphohydrolase activity (M1-M3, H6, H8, H9, H11, H13, S16) and leucine arylamidase activity (M1, M3, M4, H9, H11-H13, S14, S16). Alkaline phosphatase was detected in seven strains (M3, M4, H8, H10, H12, S14, S16) and acid phosphatase – in six strains (M3, H8, H10-H13). Lipase C14 (S16), valine arylamidase (H11), trypsin (M3), α-chymotripsin (M3), α-galactosidase (H11), β-glucuronidase (H6), β-glucosidase (S16) and N-acetyl-β-glucosaminidase (S16) were detected only in single bacterial strains.

Molecular phylogenetic identification of strains revealed low diversity of cultivable bacteria, which belonged to four genera only (Fig. 1). Microcella, Planococcus, and Halomonas strains were isolated from the slightly saline samples, while Bacillus and Halomonas strains were isolated from the moderately and highly saline samples. In general, nine strains belonged to the genus Bacillus, six to Halomonas, while Microcella sp. and Planococcus sp. were represented by single isolates. The predominance of Bacillus species was the most significant in the highly saline samples.

Discussion

Alkaliphiles are a class of extremophiles which coexist with neutrophiles and inhabit extreme environments (Horikoshi, 1991). The number of alkaliphilic microorganisms in neutral soil samples ranges from 10^2 to 10^5 CFU g^{-1}, which corresponds to between 1/10 and 1/100 of the population of neutrophilic microorganisms (Horikoshi, 1991). In our study the ratio was higher, ranging from 1/2 to 1/7. The number of culturable aerobic bacteria in alkaline lime was approximately 10^6 CFU ml^{-1} in the alkaline medium. Our results are
similar to those obtained by Ntougoias et al. (2006), who studied alkaline alpeorujo, a sludge-like by-product in olive oil extraction. However, the total number of heterotrophic bacteria in neutral medium was lower by two orders of magnitude in the alkaline lime. The difference may be caused by a considerably higher content of organic matter in alkaline alpeorujo (olives, olive leaves, and freshwater are a source of neutrophiles) compared to the nutrient-poor alkaline lime, consisting almost entirely of calcium carbonate.

The total number of bacteria in alkaline lime (approx. 10^7 cells g$^{-1}$) was higher than the total number of bacteria in carbonate rock cores collected from cave walls in the Bahamas (Schwabe et al., 1997). On the other hand, it was lower compared to dolomites and soil, where it ranged from 10^8 to 10^9 cells g$^{-1}$ (Ellis et al., 2003; Su et al., 2004; Maron et al., 2006; Stres, 2007; Sheibani et al., 2013).

The present study is the first attempt to investigate the distribution of bacteria in alkaline distillery lime. The results of the physicochemical analyses indicate that lime is a very harsh environment due to high pH and low nutrient level. Depositing alkaline lime for over fifty years has promoted the selection of microorganisms capable of growing in a nutrient-poor, highly alkaline, and moderately saline environment. As a result, the majority of the bacterial strains isolated from the lime samples were facultative alkaliophiles and moderate halophiles.

* Bacillus pseudofirmus *, moderate halotolerant and obligate alkaliophile, first isolated from soil and animal manure (Nielsen et al., 1995), was represented by six isolates (M1, H8, H9, H12, H13). These extremely halotolerant, facultatively alkaliophilic bacteria show marginal growth at pH 7 and optimum growth at the temperature of 20–30°C.

The closest relative of three isolates: H5, H7 and H11 was *Bacillus luteus*, first isolated from soil sample collected from Mandpam, Tamilnadu, India (Subhash et al., 2014).

* Planococcus rifietoensis*, the closest relative of strain S17, is a halotolerant, alkaliophilic bacterium, first isolated from the algal mat formed at the sulfurous spring in Rifieto, Italy (Romano et al., 1996).
Halomonas sp. are ubiquitous, moderately halophilic/halotolerant Gram-negative bacteria found in saline lakes, saline soils, marine environments, and solar salt extraction facilities. Several alkaliphilic species of *Halomonas* can live in soda lakes and alkaline soils (Máthé *et al.*, 2014). *Halomonas hamiltonii*, the closest relative of strains M3, H6, S14, and S16, is a halophilic, facultative alkalophilic rod-shaped bacterium, isolated from patients’ blood and dialysis machines in a nursing home (Kim *et al.*, 2010). *Halomonas olivaria*, the closest relative of bacterial strain M2 is a moderately halophilic, alkalitolerant bacterium, isolated from olive-processing effluents (Amouric *et al.*, 2014). *Halomonas pantelleriensis*, the closest relative of strain M4, is a haloalkaliphilic rod-shaped bacterium with optimum growth at pH 9.0, isolated from hard sands of the lake Venere in the Pantelleria island, Italy (Romano *et al.*, 2003).

Microbacteriaceae are widespread in natural and artificial environments such as soil, sewage, seawater and fresh water, plants, mushrooms, insects, and dairy products (Kageyama *et al.*, 2007) although they have been rarely isolated from alkaline environments. They include *Microcella putealis*, the closest relative of strain S16, a Gram-positive alkaliphilic bacterium isolated from a non-saline, highly alkaline groundwater (Tiago *et al.*, 2006).

The few available reports concerning microbial diversity of alkaline environments indicate the existence of many physiological groups (Duckworth *et al.*, 1996; Jones *et al.*, 1998; Horikoshi, 1999; Ntougias *et al.*, 2006; Felföldi *et al.*, 2009). The aerobic microbial population of these ecosystems contains organotrophic bacteria, including members of the *Bacillus* species, which are able to produce a wide range of enzymes used for recycling biopolymers: proteases, lipases, amylases, and cellulases. Strains capable of decomposing starch were the most numerous among the bacteria isolated from alkaline lime. Seventy percent of the isolated strains produced α-glucosidase, which breaks down starch and disaccharides to glucose. Bacterial amylases were extensively investigated because of their wide application in detergent, food, textile, and paper industries. Amylases with pH optimum of 9–12 have been identified in several alkaliphilic *Bacillus* spp. (Wang *et al.*, 2006; Fujinami *et al.*, 2010; Raval *et al.*, 2014).

In addition to amyloytic strains, the investigated alkaline lime contained bacteria capable of hydrolyzing proteins. More than half of the bacterial strains showed leucine arylamidase activity and one of these strains synthesized trypsin and α-chymotrypsin. Alkaline proteases secreted by both neutrophilic and alkalophilic bacteria seem interesting because they constitute a major source of proteolytic enzymes produced commercially (Horikoshi, 1999; Fujinami *et al.*, 2010). Alkalophilic proteases are widely applied in the detergent manufacturing (Wang *et al.*, 2006), leather tanning (Vijay Kumar *et al.*, 2011), food processing (Klomklao *et al.*, 2012), and recovering silver from Xray films (Shankar *et al.*, 2010). *Bacillus* species are main producers of many alkaline proteases, already isolated and described.

Bacteria which are able to synthesize lipase and decompose olive oil containing long chain fatty acids constituted the least numerous physiological group among the bacterial strains isolated from alkaline lime. Four isolates growing on agar plates with olive oil and Rhodamine B (indicator) hydrolyzed the substrate, releasing free fatty acids (producing an orange halo around the bacterial colonies). Surprisingly, the results of the APIZYM test revealed that only strain S16 showed (low) activity of lipase (C14). On the other hand all strains except one synthesized lipase/esterase (C8), which catalyze the hydrolysis of short chain fatty acids. Numerous applications of lipases include organic synthesis (Jiang *et al.*, 2013), hydrolysis of fats and oils (Bourlieu *et al.*, 2012), modification of fats (Gupta *et al.*, 2003), flavor enhancement in food processing (Chávez *et al.*, 2011), resolution of racemic mixtures, and chemical analyses (Sharma *et al.*, 2011).

As has been demonstrated in several studies, some alkaliphilic *Bacillus* spp. produce cellulases which can be used for improving the efficiency of detergents (Ito, 1997). However, bacterial strains isolated from alkaline lime were unable to decompose carboxymethyl cellulose (CMC).

The comparison of taxonomic identification of the investigated microorganisms with their physiological and ecological properties and the activity of identified enzymes indicates that they were highly variable within the members of the same species (e.g. H5, H7 and H11 or H6, M3, S14 and S15). One the other hand, protein and lipid hydrolysis were detected only in strains that belonged to the genus *Bacillus* (and also in a *Microcella* strain).

The pilot data presented shows that a viable alkaliphilic community is present in the highly alkaline, distillery lime, a by-product in Solvay’ soda process. The species composition of the microbial population strongly depends on pH values and salt concentration. Moreover, alkaline lime is a poor in nutrients, oligotrophic environment. Autochthonous microorganisms can survive in these unfavorable conditions owing to their ability to form spores. Therefore the dominant genus among cultivable bacteria is *Bacillus*. The surface layer of the lime may be colonized by microorganisms transferred from the surrounding saline soils and Lake Pakoskie, situated 500 m West of the repository ponds.

The obtained results confirm that the isolates display various enzymatic activity; they can decompose starch, protein and fat. Past experiences at such
environments has shown that it is extremely likely that alkaline adapted and tolerant microbes may be useful for man. The results of this study will provide foundation for further detailed research on extremozymes secreted by the isolates.

Applied in this research culture-based method are naturally biased in their evaluation of microbial genetic diversity by selecting a small (< 1%), particular population of microorganisms present in a given environment. However the use of cultural enrichment techniques has its place for screening and isolating organisms for potential biotechnological application where industrial-scale growth in process systems, and hence amenability to growth in such systems, is required (Ritz, 2007).

Acknowledgements

This work was partially supported by the Hungarian Scientific Research Fund (grant No. OTKA PD 105407). T.F. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Study was partly supported by research fellowship within project "Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences" (project no. POKL.04.01.00-081/10).

Literature

Inhibitory Effect of Newly-Synthesized Chalcones on Hemolytic Activity of Methicillin-Resistant Staphylococcus aureus

Dragana D. Božić, Marina T. Milenković, Branka M. Ivković, Anders Rhod Larsen and Ivana B. Ćirković

1 Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
2 Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
3 Department of Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark
4 Department of Bacteriology, Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Belgrade, Serbia

Abstract

Pathogenicity of methicillin-resistant Staphylococcus aureus (MRSA) is associated with a broad spectrum of virulence factors, amongst which is α-hemolysin. The aim of this study was to investigate the effect of three newly-synthesized chalcones (1,3- Bis-(2-hydroxy-phenyl)-propanone, 3-(3-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propanone and 3-(4-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propanone) on α-hemolysin production of clinical isolates of MRSA. Subinhibitory concentrations of the tested compounds reduced hemolytic activity of MRSA strains, with almost complete abolishment of hemolysis at concentrations in the range of 1/2–1/4 x MIC (25–12.5 μg/ml). In conclusion, newly-synthesized chalcones tested in this study showed potent inhibitory activity on α-hemolysin production of multiresistant and genetically diverse MRSA strains.

Key words: α-hemolysin, chalcones, MRSA

Inhibitory Effect of Newly-Synthesized Chalcones on Hemolytic Activity of Methicillin-Resistant Staphylococcus aureus

Pathogenicity of methicillin-resistant Staphylococcus aureus (MRSA) is directly associated with a broad spectrum of virulence factors, amongst which is α-hemolysin (i.e. Hla or α-toxin). It is generally considered that α-hemolysin plays a central role in the pathogenesis of staphylococcal infections, especially in pulmonary infections caused by these bacteria (Bubeck Wardenburg et al., 2007; Burlak et al., 2007; Montgomery et al., 2008). Approximately one half of staphylococcal necrotizing pneumonia cases affecting previously healthy adults and children are caused by community-associated MRSA strains (Ragle and Bubeck Wardenburg, 2009). Besides direct lysis of the pulmonary cells, α-hemolysin also activates alveolar macrophages or monocytes, induces massive polymorphonuclear leukocyte influx into lung parenchyma with subsequent degranulation and destruction of microvascular endothelium and adjacent tissues, and induces platelet-neutrophil co-aggregation leading to the host response to toxin that contribute to the severity of lung destruction (Parimon et al., 2013). Such complex pathogenicity and occurrence of multiresistant strains urge the development of antimicrobial compounds that selectively target virulence factors. In past years, several studies investigated the inhibitory activity of various compounds against extracellular virulence factors of S. aureus (Escaich, 2008; Cegelski et al., 2008). Previously we have reported antimicrobial activity of three newly-synthesized chalcones against clinical isolates of MRSA, and inhibitory effect on the expression of virulence factors related to the early step of bacterial invasion-adherence (i.e. biofilm formation, glycocalyx production and adherence to human fibronectin) (Božić et al., 2014). Therefore, the aim of this study was to investigate the effect of 1,3- Bis-(2-hydroxy-phenyl)-propanone (O-OH), 3-(3-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propanone (M-OH) and 3-(4-Hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propanone (P-OH) on α-hemolysin production of clinical isolates of multiresistant and genetically diverse strains of MRSA.

Antibacterial activity of chalcones was tested against 20 clinical isolates of MRSA isolated from blood (4), wound (6), sputum (3), endotracheal tube (2), abdominal drain (1), nose (1), skin (1), urine (1) and external
Božić D.D. et al.

auditory canal (1) and one laboratory control strain of methicillin-resistant *S. aureus* ATCC 43300 (KWIKSTIK™, Microbiologics, USA). Identification of the isolates and methicillin resistance were determined by VITEK 2 test cards GP and AST-P580 (bioMérieux, France) and confirmed by PCR for *nuc* (Brakstad et al., 1992) and *mecA* (Bignardi et al., 1996) genes. Genotyping (SCCmec, *agr*, *pvl* and *spa* typing) of MRSA was performed according to previously described protocols (Boye et al., 2007; Lina et al., 2003; Harmsen et al., 2003). The *spa* types were clustered into *spa* clonal complexes (CCs) using the algorithm based upon repeat pattern (BURP) with Ridom Staph-Type 1.4 software (http://www.ridom.de). The multiresistance profile of MRSA strains was determined by VITEK 2 test card AST-P580 and further supplemented with disc diffusion test according to CLSI guidelines (CLSI, 2007).

Chalcones tested in this study (Fig. 1) were obtained from the Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia. Compounds were prepared and characterized as previously described (Božić et al., 2014) and their antimicrobial activity was determined by broth microdilution test according to CLSI guidelines (CLSI 2007). Hemolytic activities of MRSA culture supernatants were determined according to the method of Rowe and Welch (1994). The data obtained in this study were analyzed in SPSS statistical program (PASW statistics for Windows, Version 18.0, Chicago: SPSS Inc. USA) using methods of descriptive statistics, Chi square test and Mann-Whitney U test.

Clinical isolates of MRSA were genetically heterogeneous and expressed multiresistance phenotype (Table 1). MRSA strains were classified into SCCmec type I (55.5%), II (5.0%), III (20.0%), IV (10.0%) and V (10.0%) and *agr* type I (35.0%), II (60.0%) and III (5.0%). Strains belonged to 10 *spa* types and were clustered into 5 *spa* CCs, with most frequent CC5 (55.0%) and CC8 (20.0%).

Tested chalcones exerted inhibitory activity against MRSA, with the order of potency of chalcones (average MIC ± SD) as following: O-OH (MIC = 37.5 ± 13.2 µg/ml) > M-OH (MIC = 97.5 ± 27.5 µg/ml) > P-OH (MIC = 110.8 ± 21.1 µg/ml). The most significant dose-dependent inhibition of hemolysis was observed in MRSA supernatants cultivated with O-OH chalcone (Fig. 2). A 91.6–99.7% reduction of hemolysis was detected in all MRSA strains cultivated with ½ × MIC of O-OH. Hemolytic activity of MRSA strains cultivated with 1/2 × MIC (25.0 µg/ml) and 1/4 × MIC (12.5 µg/ml) of O-OH was in the range of 3.8–8.2% of the positive control (p < 0.001). Mild increase of the hemolytic activity was detected after cultivation with 1/8 × MIC (6.2 µg/ml) up to 19% (p < 0.01), and 1/16 × MIC (3.1 µg/ml) up to 34.6% (p < 0.01). The effect of M-OH

Fig. 1. The chemical structures of the tested chalcones: 1,3- Bis-(2-hydroxy-phenyl)-propenone (O-OH) 3-(3-hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone (M-OH) 3-(4-hydroxy-phenyl)-1-(2-hydroxy-phenyl)-propenone (P-OH)

Table I

<table>
<thead>
<tr>
<th>CC type</th>
<th>spa type</th>
<th>N° of strains</th>
<th>SCCmec type</th>
<th>agr type</th>
<th>PVL</th>
<th>Resistance profile (> 50% of strains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC5</td>
<td>t041</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, LIN, CLIN, ER, CLA, AZ, SPIRA, TET, DOX, CHL</td>
</tr>
<tr>
<td></td>
<td>t041</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, LIN, CLIN, ER, CLA, AZ, SPIRA, CHL</td>
</tr>
<tr>
<td></td>
<td>t003</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>–</td>
<td>KAN, TOB, LIN, CLIN, ER, CLA, AZ, SPIRA</td>
</tr>
<tr>
<td>CC8</td>
<td>t030</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, ER, CLA, AZ, TET, DOX, MIN, CHL</td>
</tr>
<tr>
<td></td>
<td>t030</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, LIN, CLIN, ER, CLA, AZ, SPIRA, TET, DOX, MIN</td>
</tr>
<tr>
<td></td>
<td>1969</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, ER, CLA, AZ, TET, DOX</td>
</tr>
<tr>
<td>CC45</td>
<td>t015</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, LIN, CLIN, ER, CLA, AZ, SPIRA, CHL</td>
</tr>
<tr>
<td></td>
<td>t583</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>–</td>
<td>AM, GEN, KAN, TOB, STR, ER, CLA, AZ</td>
</tr>
<tr>
<td>CC80</td>
<td>t044</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>+</td>
<td>KAN, STR, TET</td>
</tr>
<tr>
<td>CC152</td>
<td>t595</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>+</td>
<td>GEN, KAN, TOB, LIN, TET</td>
</tr>
<tr>
<td></td>
<td>16371</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>–</td>
<td>GEN, KAN, TOB, ER, CLA, AZ</td>
</tr>
</tbody>
</table>

and P-OH was tested in the two-fold higher concentrations than O-OH chalcone (50.0–6.2 µg/ml), corresponding the same range of MIC's (1/2 × MIC – 1/16 × MIC). Hemolytic activity of MRSA strains cultivated with 1/2 × MIC and 1/4 × MIC of M-OH was in the range of 7.1–18.8% of the positive control (p < 0.01; p < 0.001), and cultivation with 1/8 × MIC lead to the increase of the hemolysis up to 40.7% of the positive control (p < 0.05). The lowest applied concentration of M-OH (1/16 × MIC, 6.2 µg/ml) did not reduce the hemolytic activity of MRSA (p > 0.05). Statistically significant inhibition of hemolytic activity of MRSA strains cultivated with P-OH chalcone occurred only in concentrations of 1/2 × MIC (7.7%; p < 0.01) and 1/4 × MIC (43.8%; p < 0.05) (Fig. 2). Chalcones themselves did not perform any hemolytic activity or induced hemolysis of rabbit erythrocytes in the same range of MIC's (1/2 × MIC – 1/16 × MIC; p > 0.05).

Antistaphylococcal activity of various chalcones is strongly correlated with their chemical characteristics. It is generally considered that lipophilicity of the ring A (Nowakowska, 2007) and presence of free hydroxyl group/s at various positions of the ring B are necessary for antistaphylococcal activity of these compounds (Sato et al., 1996; Alcaraz et al., 2000; Kromann et al., 2004; Talia et al., 2011). Three compounds investigated in our study carrying free hydroxyl group at various positions of the B ring exerted strong anti-MRSA activity, with 1,3- Bis-(2-hydroxy-phenyl)-propenone (O-OH) bearing the hydroxyl group at the position 2 of ring B as the most active one. These results are in accordance with the findings of other investigators (Alcaraz et al., 2000; Kromann et al., 2004). Subinhibitory concentrations of the tested compounds also inhibited hemolytic activity of MRSA strains in a dose dependent manner, with almost complete abolishment of hemolysis at concentrations in the range of 1/2–1/4 × MIC (25–12.5 µg/ml). Inhibition of hemolytic activity of α-hemolysin was dose dependent. Chalcone with free hydroxyl group at the position 2 of ring B was the most active one, since the lowest applied concentration of this compound (1/16 × MIC, 3.1 µg/ml) exerted statistically significant inhibition of hemolysis. Higher concentrations of other tested compounds exerted similar inhibitory effect, with partial or complete recovery of hemolytic activity of α-hemolysin when applied in the lowest concentrations (1/16 × MIC, 6.2 µg/ml). Previously it has been reported that subinhibitory concentrations of chalcones with similar chemical structure isolated from natural sources, like licochalcone A and E, inhibit α-hemolysin production (Qiu et al., 2010a; Zhou et al., 2012). Licochalcone A possess anti-MRSA activity in the range of MIC's from 2.0–8.0 µg/ml (Fukai et al., 2002; Qiu et al., 2010a), and inhibitory effect on α-hemolysin production in the range of 1/2–1/8 × MIC (Qiu et al., 2010a). Licochalcone E was found to be the most active licochalcone against S. aureus, since the inhibitory effect was detected in the range of MIC's from 1.0–4.0 µg/ml, and inhibition of α-hemolysin production in the range of 1/4–1/16 × MIC (Zhou et al., 2012).

Precise mechanism of antimicrobial activity of chalcones and inhibition of α-hemolysin synthesis has not been clarified yet. Several different mechanisms could be involved, like direct enzyme inhibition, inhibition

Fig. 2. The inhibitory effect of the O-OH, M-OH and P-OH chalcone on α-hemolysin production of MRSA strains. Results are present as mean percent of hemolysis ± SD of 20 clinical isolates of MRSA and one control strain (MRSA ATCC 43300), compared to the positive control (i.e. hemolytic activity of supernatants of untreated MRSA strains presented as 100% hemolysis); *p < 0.05; **p < 0.01; ***p < 0.001.
of DNA or RNA synthesis (Mori et al., 1987; Ohemeng et al., 1993) or interference with energy metabolism by inhibition of NADH-cytochrome c reductase, reducing the energy required for active uptake of various metabolites and biosynthesis of macromolecules (Haraguchi et al., 1998; Cushnie and Lamb, 2011). Licochalcone A (Qiu et al., 2010a) or thymol (Qiu et al., 2010b) perform inhibitory effect on α-hemolysin synthesis through inhibition of agrA transcription, one of the components of the agr global regulatory system of S. aureus. Besides influence on agr global regulatory system, licochalcone E also directly inhibits expression of hla-gene encoding α-hemolysin synthesis (Zhou et al., 2012). Accordingly, it is possible that chalcones also inhibit production of α-hemolysin through mechanisms proposed by Qui et al. and Zhou et al. Further studies are necessary to elucidate the precise mechanisms of inhibitory effect of tested chalcones on hemolytic activity of α-hemolysin.

Acknowledgments
Funding: The work of Dragana D. Božić and Ivana B. Ćirković was supported by the Ministry of Education, Science and Technological Development, Republic of Serbia (project grant no. 175039).

Literature

Salmonella is a significant etiologic agent of bacterial intestinal infections in Poland and other European Union countries. According to the data published by NPHI-NIH Department of Epidemiology in the report "Infectious diseases and poisonings in Poland in 2013", 7577 cases of human Salmonella infections were notified in 2013 in our country. Among the most common Salmonella serovars, Salmonella Enteritidis and Salmonella Typhimurium were isolated. Basing on the data collected by European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), similar situation is also observed in other European countries, but as far as the end of the last century Salmonella Enteritidis were responsible for about 80% of cases of salmonellosis, whereas since 2000 systematic decrease in the frequency of isolation of serovar Enteritidis is observed. At the same time, especially in recent years, increase of infections caused by Salmonella Typhimurium is notified. This is a quite worrisome situation, because in opposition to Salmonella Enteritidis strains, which mostly are antimicrobial-sensitive, among Salmonella Typhimurium isolates about 60% of strains isolated from people have higher antimicrobial resistance, especially for ampicillin, tetracycline and sulphonamides. Moreover, at the end of the '90s in a few European countries and USA outbreaks of food poisoning caused by Salmonella enterica subsp. enterica 1,4,[5],12:i:- were observed. Using methods of molecular biology, this etiologic agent was finally recognized as Salmonella Typhimurium. Since the 90’s increasing incidence of monophasic Salmonella strains with antigenic formula 1,4,[5],12:i:- has been observed. According to the EFSA/ECDC data, Salmonella 1,4,[5],12:i:- has been the third most common Salmonella serovar isolated from human samples in 2011. 90 % of these strains were resistant to ampicillin, streptomycin, tetracycline and sulphonamides in (EFSA, 2012).

An increasing number of Salmonella O:4 strains with “i” flagellar antigen, non-agglutinating with any antisera for second-phase of H antigen is also observed in Poland. There is no precise information, of which Salmonella serovar this monophasic variant is. It could be monophasic Salmonella Typhimurium or one of the other serovars, belonging to the same serogroup, which could have such antigenic formula, i.e. Salmonella Lagos, Salmonella Agama, Salmonella Farsta, Salmonella Tsevie, Salmonella Glocester or Salmonella Tumodi (Grimont and Weill, 2007).

Salmonella serovars mentioned above could be recognized in a few ways. The most popular is the conventional serotyping method – determining the presence of somatic and flagellar antigens by slide agglutination

Molecular Methods for Identification of Monophasic Salmonella Typhimurium Strains

GRZEGORZ MADAJCZAK,1*, BOŻENA DERA-TOMASZEWSKA,2 MONIKA WASIAK,1 ANNA CHRÓST1 and JOLANTA SZYCH1

1 Department of Bacteriology, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
2 Department of Medical Microbiology, Medical University of Gdańsk, Gdańsk, Poland

Submitted 18 December 2014, revised 2 April 2015, accepted 20 May 2015

Abstract

Two molecular biology methods were used to differentiate Salmonella enterica 1,4,[5],12:i:- strains: “Salmonella Check&Trace microarray” (CT) and multiplex PCR (mPCR). For 92 strains in CT result "Salmonella 1,4,[5],12:i:-" were obtained. Those strains were confirmed in mPCR as monophasic fljB-lack Salmonella Typhimurium. For 17 strains, which in CT assay were recognized as Salmonella Typhimurium, the same identification was obtained in mPCR. Reference Salmonella strains: Lagos, Agama, Tsevie, Glocester and Tumodi in CT were recognized as Salmonella genovar, in mPCR – as Salmonella O:4, H:i other than Salmonella Typhimurium, the same like Salmonella Farsta, recognized incorrectly in CT as Salmonella Typhimurium.

Keywords: microarray, molecular methods, monophasic Salmonella Typhimurium, multiplex PCR, serotyping
using specific antisera (Szych and Madajczak, 2010). Then serovar is identified according to the White-Kaufmann-Le Minor scheme (Grimont and Weill, 2007). Unfortunately, this method has many limitations, connected with antisera quality or atypical forms of Salmonella antigens. Such deviation like monophasic form or roughness could obstruct the determination of antigenic structure and serovar identification. For that reason many alternative – molecular biology based methods have been developed, however not all of them are routinely used. The most precise, and the same most complicated, are microarray-based and sequencing-based methods (Achtman et al., 2012; Braun et al., 2012; Franklin et al., 2011). Some of those methods found application in commercially available tests, like microarray based “Salmonella Check&Trace” (Check-Points BV, Netherlands) or bead-based suspension array – xMAP® Salmonella Serotyping Assay (Luminex, USA) (Fitzgerald et al., 2007; Jean-Gilles Beaubrun et al., 2014; Wattiau et al., 2008). All these methods could be used for differentiation of Salmonella serovars with O:4 and H:i antigens, with undetectable second phase flagellar antigen by traditional methods, but they are a little bit too complicated. For that reason, EFSA in their scientific opinion proposed the simple multiplex-PCR-based method for identification and differentiation of Salmonella Typhimurium and its monophasic variant 4,[5],12:i:-. In this method two genetic markers are used: intergenic region of the phase I flagellin gene cluster fliB-fliA and variable region of fliB gene, which encodes II-phase flagellar antigen (EFSA BIOHAZ, 2010).

In this study two molecular biology methods were used to differentiate Salmonella strains belonging to the O:4 serogroup and sharing the same first flagellar antigen H:i: microarray-based method and recommended by EFSA multiplex PCR.

One hundred and ten Salmonella enterica subsp. enterica strains with O:4 and H:i antigens have been used for this study. Samples were collected in 2007–2012 years in regional Epidemiological Sanitary Stations in Poland and in a private company from the food-quality sector. Moreover, the reference strain Salmonella Typhimurium ATCC 700720 has been used as well as Salmonella Lagos, Salmonella Agama, Salmonella Farsta, Salmonella Tsevie, Salmonella Glocester and Salmonella Tumodi strains obtained from the National Salmonella Centre (Gdańsk, Poland). All strains used for study were reidentified according to the routinely used procedure, based on the determination of biochemical features in classical homemade tube tests and serovar identification by slide agglutination using specific antisera (Biomed Kraków, Poland; Immunolab, Poland; Staten Serum Institute, Denmark) according to the White-Kaufmann-LeMinor scheme (Grimont and Weill, 2007; Szych and Madajczak, 2010). Moreover, the phase inversion was performed to obtain II-phase flagellar antigen in accordance with routine procedure (Szych and Madajczak, 2010).

To perform Microarray-based method, the commercially available test “Salmonella Check&Trace microarray” (CT) (Check-Points BV, Netherlands) was used. Assay was performed according to manufacturer instruction. In multiplex PCR the fliB gene fragment and intergenic region of the phase I flagellin gene cluster fliB-fliA fragment were detected according to the procedure recommended by EFSA (EFSA BIOHAZ, 2010). For Salmonella Typhimurium two fragments were expected: 1389 bp for fliB gene and 1000 bp for intergenic region. For monophasic Salmonella Typhimurium only one product was expected – 1000 bp for intergenic region. Other O:4 strains sharing the “i” antigen have two fragments 1389 bp (fliB) and 250 bp (intergenic region).

One hundred and forty six Salmonella enterica subsp. enterica O:4 strains, that harbor H:i antigen were submitted to the laboratory where this study was performed. After the reidentification process 110 strains were selected for further research. For all strains the second phase of the flagellar antigen was not detected, even in the phase inversion process. The presence of O:1, O:5, O:12 somatic antigens was varied. All other reference Salmonella strains used in the study (serovars: Lagos, Agama, Farsta, Tsevie, Glocester, Tumodi and Typhimurium ATCC700720) were recognized correctly. Seventeen of all monophasic Salmonella strains used in the study were recognized in CT assay as Salmonella Typhimurium. For 16 strains in Salmonella Typhimurium group, “Salmonella Typhimurium (10909)” result was obtained and for one strain (PZH 113/07) “Salmonella Typhimurium (11933)”. Ninety two strains were recognized as “Salmonella 1,4,[5],12:i:- (2717)”. For one strain (PZH 258/12) the result “Salmonella, genovar 10397” was obtained. For the selected strains from the Salmonella Typhimurium group mentioned above, a more precise phase inversion process was performed. Highly concentrated, not-commercially available, H:i antiseraum have been used. For one such strain, after third round of phase inversion with addition 0.5 ml of antiseraum, a positive reaction with II-phase antigens H:1,2 was obtained (strain no PZH 113/07). For three more strains phase inversion was unsuccessful. For reference non- Salmonella Typhimurium strains in CT assay “Salmonella, genovar” result was obtained with various code. One of them – Salmonella Farsta was incorrectly recognized as “Salmonella Typhimurium, 10909”. The CT assay for this strain was repeated with the same faulty result. Detailed information about CT assay results are presented in Table I.

Ninety two S. enterica subsp. enterica 1,4,[5],12:i:- strains, recognized in both (serotyping and microarray)
methods as \textit{S. enterica} \textit{1},4,[5],12:i:- in multiplex PCR were recognized as monophasic \textit{Salmonella} Typhi-
murium, with single 1000 bp product for \textit{flIB}-\textit{flIA} intergenic region. Strain PZH 258/12 was also recog-
nized as monophasic \textit{Salmonella} Typhimurium. Strain PZH 113/07 was found to be \textit{Salmonella} Typhi-
murium with two specific multiplex PCR products. The same result was obtained for 16 strains with difference in serotyping and CT microarray and for reference strain \textit{Salmonella} Typhimurium ATCC 700720. For all reference non- \textit{Salmonella} Typhimurium strains, two DNA fragments were detected – 1389 bp and 250 bp, as expected.

According to the data published by EFSA/ECDC monophasic \textit{Salmonella} Typhimurium is one of the most frequent serovars isolated from human, animal food and feed samples in the last years (EFSA and ECDPC, 2014). Unfortunately it is impossible to distinguish it with conventional methods from other monophasic \textit{Salmonella} from O:4 group, which harbor H:i antigen. It could be done only using molecular biology methods, which allow to identify \textit{Salmo-
nella} serovar, when classical serologic methods fail (Fitzgerald \textit{et al}., 2007; Franklin \textit{et al}., 2011; Junia Jean-Gilles Beaubrun \textit{et al}., 2012; Wattiau \textit{et al}., 2008). Those methods were not developed only for monophasic \textit{Salmonella} Typhimurium identification, but for broad spectrum of \textit{Salmonella} serovars. They are also not routinely used, mostly because of high hardware requirements and high costs for single test. For that reason other techniques, mostly simple PCR-based, were developed, which allow to support conventional serotyping technique, especially in case of difficult strains (monophasic or rough). For example, Herrera-Leon \textit{et al} developed multiplex PCR for identification of most common phase-I flagellar antigens (Herrera-
Leon \textit{et al}., 2004). Moreover, Echeita \textit{et al} developed a PCR procedure for H1 antigenic complex identification and for other antigens (Echeita \textit{et al}., 2002; Echeita and Usera, 1998). Both techniques could be used also for monophasic \textit{Salmonella} Typhimurium identification, but under condition – \textit{flIB} gene presence. Present stud-
ies, similar to the results of Echeita \textit{et al} showed that epidemic \textit{S. enterica} subsp. \textit{enterica} 1,4,[5],12:i:- strains are \textit{flIB}-negative variants of \textit{Salmonella} Typhimurium (Echeita \textit{et al}., 2001). For that reason other techniques must be used for such strains identification, for example EFSA-recommended two-genes multiplex PCR (EFSA BIOHAZ, 2010). Check&Trace microarray mentioned previously is also useful for monophasic \textit{Salmonella} strains serotyping, including \textit{S. enterica} subsp. \textit{enterica} 1,4,[5],12:i:- serovar (Check-Points BV, 2014). Validation of this test was the subject of a few studies, also for diagnostically difficult \textit{Salmonella} strains (Jean-Gilles Beaubrun \textit{et al}., 2014; Madajczak and Szych, 2010; Wattiau \textit{et al}., 2008). In previous studies usefulness of CT assay was confirmed, also for monophasic strains, but not for monophasic \textit{Salmonella} Typhimurium (Madaj-

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|}
\hline
\textbf{Final serovar / antigenic formula identification} & \textbf{No} & \textbf{CT microarray result} & \textbf{Multiplex PCR result} \\
\hline
\textit{S. enterica} 1,4,[5],12:i:- & 16 & \textit{Salmonella} Typhimurium (10909) & S. Typhimurium \\
S. Typhimurium & 1 & \textit{Salmonella} Typhimurium (11933) & \\
S. Typhimurium ATCC 700720 & 1 & \textit{Salmonella} Typhimurium (10909) & \textit{Salmonella} 1,4,[5],12:i:- (2717) & Monophasic S. Typhimurium \\
\textit{S. enterica} 1,4,[5],12:i:- & 92 & \textit{Salmonella} 1,4,[5],12:i:- & \\
\textit{S. enterica} 1,4,[5],12:i:- & 1 & \textit{Salmonella}, genovar (10397) & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
S. Tumodi & 1 & \textit{Salmonella}, genovar (8232) & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
S. Gloucester & 1 & \textit{Salmonella}, genovar (14390) & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
S. Tsevie & 1 & \textit{Salmonella}, genovar (15912) & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
S. Farsta & 1 & \textit{Salmonella} Typhimurium (10909)** & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
S. Agama & 1 & \textit{Salmonella}, genovar (10762) & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
S. Lagos & 1 & \textit{Salmonella}, genovar (9865) & \textit{Salmonella} O:4, H:i other than S. Typhimurium \\
\hline
\end{tabular}
\caption{Summarized results of CT microarray and multiplex PCR.}
\end{table}

* Strain PZH 113/07 initially identified as \textit{S. enterica} 1,4,[5],12:i:-; ** Strain PZH 258/12; *** Incorrect identification
strains were not isolated during the 6 years of our study, but according to principle of operation of both tests, it is probable, that they could be correctly recognized in multiplex PCR and unrecognized in CT assay.

Comparing these two methods, another important factor should be taken into consideration, that is the costs of equipment needed to perform both tests. CT assay needs dedicated only for this technique (Tube Array) reader. Multiplex PCR could be performed with standard thermocycler available in many laboratories.

Multiplex PCR seems to be a better method then Check&Trace microarray for differentiation of monophasic Salmonella Typhimurium and other Salmonella which harbor O:4 and H:i antigens.

Acknowledgments
This work was supported by National Science Centre, project No NN 404182940.

Literature

Check-Points B.V. 2014. List of serovars identified by Check&Trace Salmonella.

Zaklad Epidemiologii NIZP-PZH. 2013. Contagious infections and poisonings in Poland.
Probable Interspecies Transfer of the \textit{bla}_{VIM-4} Gene between \textit{Enterobacter cloacae} and \textit{Klebsiella pneumoniae} in a Single Infant Patient

KATARZYNA PIEKARSKA\(^*\), KATARZYNA ZACHARCZUK\(^1\), MAGDALENA RZECZKOWSKA\(^1\), TOMASZ WOŁKOWICZ\(^2\), ALEKSANDRA JANUSZKIEWICZ\(^1\), EDYTA PODSIADŁY\(^3\), URSZULA DEMKOW\(^2,3\) and RAFAŁ GIERCZYNSKI\(^1\)

\(^1\) Department of Bacteriology, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
\(^2\) Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Public Pediatric Teaching Hospital, Warsaw, Poland
\(^3\) Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland

Submitted 17 February 2015, revised 28 April 2015, accepted 28 April 2015

\textbf{Abstract}

We report the interspecies transfer of the \textit{bla}_{VIM-4} gene in MBL-producing \textit{Enterobacter cloacae} and \textit{Klebsiella pneumoniae} isolates from a newborn patient who had received meropenem therapy. We show evidence that gene \textit{bla}_{VIM-4} was transmitted as a part of the class-1 integron on a ca. ~90 kb conjugative plasmid. High homology of nucleotide sequence was observed between the integron found in VIM-4 producing \textit{E. cloacae} and \textit{K. pneumoniae} strains tested and class-1 integrons previously reported in \textit{Pseudomonas aeruginosa} from Hungary and Poland. This finding may suggest \textit{P. aeruginosa} as a potential source of acquired VIM-4 in Enterobacteriaceae.

\textbf{Key words:} Enterobacteriaceae, Enterobacter cloacae, Klebsiella pneumonia, MBL, VIM-4
Piekarska K. et al.

4

388

388

characterization of its environment were performed using conventional PCR mapping and DNA-sequencing with the primers listed in Table II.

The bla\textsubscript{VIM} gene was located on ca. ~90kb plasmids named: pEc90 and pKp90, as shown by DNA/DNA Southern-blot with VIM-probe. The Southern-blot was conducted as previously described (Wardak et al., 2007).

Both plasmids were separately transferred to \textit{Escherichia coli} DH5\textalpha by electro-transformation (Zacharczuk et al., 2011), and MICs of the both transformants were determined (Table II). Restriction endonuclease \textit{Pst}I profiles of the pEc90 and pKp90 from the transformants were indistinguishable. DNA sequencing of the \textit{bla}\textsubscript{VIM} genes from pEc90 and pKp90 revealed VIM-4 variant. The ability for conjugational transfer of the both plasmids was exhibited, using a conventional liquid-medium mating-test with rifampicin-resistant \textit{E. coli} CSH26 recipient strain. PCR mapping and DNA-sequencing (Zhao et al., 2001) shown the \textit{bla}\textsubscript{VIM-4} gene was located as a part of the class 1 integron in pEc90 and pKp90. The class-1 integron found in the both plasmids carried two resistance gene-cassettes, where in the first position was the \textit{aac(6')-Ib} gene (also named \textit{aacA4}) followed by \textit{bla}\textsubscript{VIM-4}. Subsequent DNA-sequence analysis using blast-n (NCBI) revealed that the class-1 integron reported herein has 100% homology to integron found in \textit{P. aeruginosa} (access. no. GU181265) from Hungary. Moreover, the class-1 integron reported herein in carbapenemase non-susceptible isolates of \textit{E. cloacaec} and \textit{K. pneumoniaec}, was probably closely related to the integron from \textit{P. aeruginosa} (access. no. AJ585042) from Poland. The only difference were two point-mutations (T1670G and C1671T).

In conclusion, the evidence collected in our laboratory may strongly argue for the lateral transfer of the \textit{bla}\textsubscript{VIM-4} gene between \textit{E. cloacaec} and \textit{K. pneumoniaec} isolates form the same patient. Similar findings were reported in 2002, by Luzzaro and colleagues (Luzzaro et al., 2004), who recovered VIM-4 producing strains of \textit{E. cloacaec} and \textit{K. pneumoniaec} from a 72-year-old patient that had received 4-weeks of imipenem therapy. Moreover, the nucleotide sequence of the class 1 integron that carries the \textit{bla}\textsubscript{VIM-4} gene in the both \textit{Enterobacteriaceae} strains described in this paper may suggest \textit{P. aeruginosa} as a potential source of VIM-4.

\textbf{Acknowledgements}

This research was supported by internal-grant from NIZP-PZH (no. 3/EM/2015).

Table I

Characteristics of VIM-4 producing clinical isolates of \textit{E. cloacaec} and \textit{K. pneumoniaec} together with the respective \textit{E. coli} electrotransformants.

Strain	Species	Specimen	MBLa	MIC\textsuperscript{(mg l-1}) of: CTEXAZFTPAMEMTGC											
ECV	\textit{E. cloacaec} (16.07.2010)	wound	+	> 256	48	32	64	0.75	0.5	0.19	64	16	1.5	0.5	4
KPV	\textit{K. pneumoniaec} (21.07.2010)	stool	+	24	6	1.5	0.047	0.75	0.75	0.38	1	16	0.125	0.38	3
ET	\textit{E. coli} DH5\textalpha	NA	–	0.023	0.25	0.016	0.032	0.004	0.125	0.016	0.125	0.25	0.023	0.094	0.38
ET-pEc90	\textit{E. coli} DH5\textalpha	NA	+	12	6	0.38	0.047	0.125	0.75	0.38	0.5	12	0.012	0.125	0.38
ET-pKp90	\textit{E. coli} DH5\textalpha	NA	+	16	4	0.38	0.032	0.19	0.75	0.125	0.25	6	0.016	0.125	0.38

a Abbreviations: AMK, amikacin; ATM, aztreonam; CAZ, ceftazidime; CIP, ciprofloxacin; CST, colistin; CTX, cefotaxime; FEP, cefepime; ETP, ertapenem; GEN, gentamicin; IPM, imipenem; MEM, meropenem; TGC – tigecycline. NA – not applicable.

b MBLs were detected as described previously (Franklin et al., 2006; Tato et al., 2010).

Table II

Primers used for PCR mapping and sequencing of \textit{bla}\textsubscript{VIM} genes and their environment

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5’-3’</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIM-F</td>
<td>ATCATGGCTATTTGGAGTGCTCC</td>
<td>In this study</td>
</tr>
<tr>
<td>VIM-R</td>
<td>ACGACTGAGCGATTGTGTCGCTTGG</td>
<td>In this study</td>
</tr>
<tr>
<td>5’-CS</td>
<td>GGCAATCCAGGAGCAAGGC</td>
<td>Zhao et al. (2001)</td>
</tr>
<tr>
<td>3’-CS</td>
<td>AACGAGACTTGATCTGAT</td>
<td>Zhao et al. (2001)</td>
</tr>
<tr>
<td>VIMA</td>
<td>CAACGCTATGGGACGACAAT</td>
<td>In this study</td>
</tr>
<tr>
<td>VIMB</td>
<td>GGGAGCGAGTGAGTGAGTGAT</td>
<td>In this study</td>
</tr>
</tbody>
</table>

Tests described previously by Franklin et al. (2006) and Tato et al. (2010). Detection of the \textit{bla}\textsubscript{VIM} gene and characterization of its environment were performed using conventional PCR mapping and DNA-sequencing with the primers listed in Table II. The \textit{bla}\textsubscript{VIM} gene was located on ca. ~90kb plasmids named: pEc90 and pKp90, as shown by DNA/DNA Southern-blot with VIM-probe. The Southern-blot was conducted as previously described (Wardak et al., 2007). Both plasmids were separately transferred to \textit{Escherichia coli} DH5\textalpha by electro-transformation (Zacharczuk et al., 2011), and MICs of the both transformants were determined (Table II). Restriction endonuclease \textit{Pst}I profiles of the pEc90 and pKp90 from the transformants were indistinguishable. DNA sequencing of the \textit{bla}\textsubscript{VIM} genes from pEc90 and pKp90 revealed VIM-4 variant. The ability for conjugational transfer of the both plasmids was exhibited, using a conventional liquid-medium mating-test with rifampicin-resistant \textit{E. coli} CSH26 recipient strain. PCR mapping and DNA-sequencing (Zhao et al., 2001) shown the \textit{bla}\textsubscript{VIM-4} gene was located as a part of the class 1 integron in pEc90 and pKp90. The class-1 integron found in the both plasmids carried two resistance gene-cassettes, where in the first position was the \textit{aac(6')-Ib} gene (also named \textit{aacA4}) followed by \textit{bla}\textsubscript{VIM-4}. Subsequent DNA-sequence analysis using blast-n (NCBI) revealed that the class-1 integron reported herein has 100% homology to integron found in \textit{P. aeruginosa} (access. no. GU181265) from Hungary. Moreover, the class-1 integron reported herein in carbapenemase non-susceptible isolates of \textit{E. cloacaec} and \textit{K. pneumoniaec}, was probably closely related to the integron from \textit{P. aeruginosa} (access. no. AJ585042) from Poland. The only difference were two point-mutations (T1670G and C1671T).

In conclusion, the evidence collected in our laboratory may strongly argue for the lateral transfer of the \textit{bla}\textsubscript{VIM-4} gene between \textit{E. cloacaec} and \textit{K. pneumoniaec} isolates form the same patient. Similar findings were reported in 2002, by Luzzaro and colleagues (Luzzaro et al., 2004), who recovered VIM-4 producing strains of \textit{E. cloacaec} and \textit{K. pneumoniaec} from a 72-year-old patient that had received 4-weeks of imipenem therapy. Moreover, the nucleotide sequence of the class 1 integron that carries the \textit{bla}\textsubscript{VIM-4} gene in the both \textit{Enterobacteriaceae} strains described in this paper may suggest \textit{P. aeruginosa} as a potential source of VIM-4.
Literature

According to the World Health Organization (WHO), tuberculosis (TB) has been still an important problem all over world (WHO, 2013a). The definitive TB diagnosis depends on the results of microbiological tests in addition to the clinical, radiological and histopathological data and the mycobacterial culture has been accepted as the gold standard. As the WHO started DOTS [Directly Observed Therapy Strategy (plus)] (WHO, 1999; Gupta et al., 2003) for treatment of TB disease, early and accurate diagnosis has become an important issue to take precautions and to initiate treatment plan in the hospital clinics for chest diseases. Although microscopic examination and culture are major microbiological tests for TB diagnosis, the low sensitivity of microscopy and the necessity of long incubation time for culture are the most significant limitations. Therefore, nucleic acid amplification (NAA) techniques have been used for early and differentiative detection of causative mycobacteria in clinical samples and also to support the clinical and radiological diagnosis in patients with presumptive Mycobacterium tuberculosis infection (CDC, 2009). One of the automated systems widely used is the BD ProbeTec ET which is based on the strand displacement amplification (SDA) technology. The system utilizes homogenous SDA technology as the amplification method and fluorescent energy transfer (ET) as the method of detecting the presence of Mycobacterium tuberculosis complex directly from clinical samples.

The aim of this study was to evaluate the performance of BD ProbeTec ET M. tuberculosis complex (DTB) Assay according to the laboratory data of five years in accordance with the clinical diagnosis. The clinical evaluation of patients for TB diagnosis and follow-up procedures were made by specialist physicians according to the WHO and national guidelines (WHO, 2013b).

A total of 4883 samples [4716 respiratory (4626 bronchial aspiration and 90 sputum), and 167 nonrespiratory samples (mostly (98%) smear negative)] were analyzed in the Microbiology Laboratory of Izmir Training and Research Hospital for Chest Diseases and Chest...
Surgery which has been a regional reference hospital for TB patients at the Aegean Coast of Turkey (West Anatolian Region). The patients included in the study were evaluated as having suspicious TB infection. An acid-fast smear preparation, mycobacterial cultivation, identification and molecular detection were applied to each sample.

Mycobacterial cultivation was performed by MGIT 960 system (BD Biosciences, Sparks, MD, USA) and in Lowenstein-Jensen slants. Mycobacterial identification was performed by conventional methods (Koneman et al., 1992), BACTEC 460 p-nitro-α-acetyl amino-β-hydroxypropionophenone (NAP) or BD immunochromatographic test. Additionally, commercially available PCR based reverse hybridization (Line Probe Assay = LiPA) kits were used for further identification of nontuberculous mycobacteria in species level.

Rapid molecular detection and identification for each sample was performed by the BD ProbeTec ET M. tuberculosis complex (DTB) Assay on the basis of BD ProbeTec ET system according to the manufacturer’s recommendations. The test system has utilized homogenous SDA technology as the amplification method and fluorescent ET as the method of detecting the presence of M. tuberculosis complex DNA directly from clinical specimens. All calculations were performed automatically by the instrument software. Results were reported through an algorithm as positive, negative, or indeterminate. The molecular assays with the discrepant results according to the culture and which were considered as false positive or had cross-contamination were repeated using frozen aliquots of the samples. The same result which was taken twice (either negative or positive) repeatedly was accepted as the final result in these discrepant assays. Specimens with invalid results showing inhibition of internal control (IC) and sample amplification were also retested with the dilution of 1/100. Totally, IC and sample amplification was not observed in 6 (0.12%) samples which were AFB negative and evaluated as inhibition. These samples gave valid results with the dilution of 1/100.

Among 4883 specimens tested, 4784 (98%) and 99 (2%) were smear negative and positive with acid-fast staining, respectively. ProbeTec DTB tests of 193 (4%) samples were repeated due to discrepancy. After evaluation of test results, 149 (136 respiratory, 13 NR) (3.1%) samples were culture negative and ProbeTec DTB positive, whereas 90 respiratory (1.8%) samples were culture positive and ProbeTec DTB negative. ProbeTec DTB negative and culture positive samples were also confirmed as TB by clinical evaluation. Among ProbeTec DTB positive and culture negative samples (n = 149), 72 (65 respiratory, 6 FNAB and 1 pleural fluid) (48.3%) samples were recovered from the patients who were evaluated as having TB infection and applied anti-TB treatment according to the clinical data and/or positive mycobacterial cultures taken from the other separate samples. Sixty eight of patients had TB diagnosis with clinical evaluation solely, while four patients had additional positive mycobacterial cultures taken from other separate samples. The rest of the samples (70 bronchial aspiration and 1 sputum; respiratory and 2 urine, 2 FNAB, 1 abscess and 1 gastric lavage; NR) were obtained from the patients with a diagnosis other than active TB infection (i.e. 69 respiratory samples obtained from patients with pneumonia (n = 20), lung malignancy (n = 20), COPD (n = 8), past TB infection (n = 6), sarcoidosis (n = 3), hemoptysis (n = 4), hydatidosis (n = 2), empyema (n = 1), asthma (n = 1), bronchiectasis (n = 1), Churg-Strauss syndrome (n = 1), interstitial lung disease (n = 1), silicosis (n = 1) and 6 NR samples obtained from patients with urinary tract infection (n = 2), lung malignancy (n = 1), sarcoidosis (n = 1), skin abscess (n = 1) and pneumonia (n = 1)). Additionally, two bronchial aspiration which were taken from patients with diagnosis of extrapulmonary TB (pleurisy and lymphadenitis) were ProbeTec DTB positive and culture negative as well. In 13 respiratory samples, nontuberculous mycobacterial growth was positive in culture. Among these, two samples (sputum and bronchial aspiration) were found as false positive and the other 11 samples were found as negative by ProbeTec DTB test. Distribution of culture and ProbeTec DTB test results in smear negative and positive samples according to the sample type has been shown in Table I. Sensitivity, specificity, positive and negative predictive values for ProbeTec DTB test in clinical samples when compared with the culture and with the culture in combination with the clinical diagnosis have been shown in Table II.

ProbeTec ET is one of the widely used semi-automated NAA systems based on SDA technology. The semi-automated systems like ProbeTec ET, Cobas Taqman MTB (Roche, Germany), Gen-Probe Amplified MTB Direct Test (Gene-Probe, USA) and recently, some other technologies such as RT-PCR based assays have the advantage of processing larger batch of samples at once. In low-prevalence settings, use of these systems may be more preferable to make a differential diagnosis for TB from many other clinical pictures. Patient population selected for NAA testing in TB can be variable according to the clinical findings, stage of the disease (i.e. anti-TB treatment), the incidence of mycobacteria in that region and the experience of the laboratory. Each TB control or treatment program should evaluate the overall costs and benefits of NAA testing in deciding the value and optimal use of the test in their setting. As the incidence of M. tuberculosis complex has been reported to be low (app. 20%) in our region (WHO, 2013a), it has been considered that
a NAA testing in addition to the conventional culture and automated cultivation systems which is available for batch processing and random access under the same platform would be an ideal solution for rapid and accurate diagnosis and treatment planning.

In previous studies, the sensitivity, the specificity, positive and negative predictive levels of the BD ProbeTec ET were reported within the ranges of 56.7–100, 95.3–100, 59.6–100 and 96–100%, for respiratory, 50–100 and 93.3–98.7, 33.3–80 and 97.8–100%, for nonrespiratory samples, respectively (Abdel-Aziz et al., 2011; Antonenka et al., 2013; Barber, 2008; Barrett et al., 2002; Bergmann and Woods, 1998; Bergmann et al., 2000; Johansen et al., 2002; Karadag et al., 2013; Maugéin et al., 2002; Mazzarelli et al., 2003; Pfyffer et al., 1999; Piersimoni et al., 2002; Rüscheid-Gerdes and Richter, 2004; Tu et al., 2011; Wang et al., 2004; Wang et al., 2006). In the present study, the corresponding performance values were found as 81.8, 98.3, 85.1 and 97.9%, for respiratory, and 100, 96.2, 64.7 and 100%, for nonrespiratory samples, respectively. The evaluation of discrepant results in accordance with the other positive cultures and clinical outcome made a low level of increase in the sensitivity and specificity values, but a high level of increase was observed in positive predictive values in respiratory and nonrespiratory samples (Table II). Sensitivity was evaluated as low as with the other studies using different NAA methods in smear negative and nonrespiratory samples whilst the specificity was high. However, this study differs from other studies using BD ProbeTec ET system which reported low sensitivity (25–60%) (Barber, 2008; Barrett et al.,

Table I

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Smear negative (n=4784)</th>
<th>Smear positive (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Culture / BD ProbeTec</td>
<td>Culture / BD ProbeTec</td>
</tr>
<tr>
<td></td>
<td>+ / –†</td>
<td>+ / –†</td>
</tr>
<tr>
<td>Respiratory (n=4716)</td>
<td>BA / BAL (n=4626)</td>
<td>BA / BAL (n=4626)</td>
</tr>
<tr>
<td>6 / 130</td>
<td>237 / 4085</td>
<td>3 / 1</td>
</tr>
<tr>
<td>Sputum (n=90)</td>
<td>3 / 14</td>
<td>61 / 0</td>
</tr>
<tr>
<td>0 / 2</td>
<td>1 / 3</td>
<td>6 / 3</td>
</tr>
<tr>
<td>NR (n=167)</td>
<td>Biopsy§ (n=104)</td>
<td>Biopsy§ (n=104)</td>
</tr>
<tr>
<td>0 / 8</td>
<td>0 / 96</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Urine (n=27)</td>
<td>0 / 2</td>
<td>1 / 24</td>
</tr>
<tr>
<td>0 / 0</td>
<td>2 / 13</td>
<td>0 / 0</td>
</tr>
<tr>
<td>CSF (n=15)</td>
<td>0 / 1</td>
<td>0 / 10</td>
</tr>
<tr>
<td>0 / 0</td>
<td>1 / 6</td>
<td>0 / 0</td>
</tr>
<tr>
<td>PF (n=11)</td>
<td>0 / 1</td>
<td>1 / 6</td>
</tr>
<tr>
<td>0 / 0</td>
<td>1 / 6</td>
<td>0 / 0</td>
</tr>
<tr>
<td>SBF† (n=8)</td>
<td>0 / 1</td>
<td>0 / 0</td>
</tr>
<tr>
<td>GL (n=2)</td>
<td>0 / 1</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Total (n=4883)</td>
<td>87 / 146</td>
<td>255 / 4296</td>
</tr>
<tr>
<td></td>
<td>3 / 3</td>
<td>89 / 4</td>
</tr>
</tbody>
</table>

Abbreviations: NR: Nonrespiratory, BA: Bronchial aspiration, BAL: bronchoalveolar lavage, CSF: cerebrospinal fluid, PF: Pleural fluid, SBF: Sterile body fluids, GL: Gastric lavage, –: negative, +: positive
† BD ProbeTec ET DTB negative and culture positive samples were also confirmed as TB by clinical evaluation.
‡ Among BD ProbeTec ET DTB positive and culture negative samples, 72 (48.3%) samples (65 respiratory, 7 nonrespiratory) were recovered from the patients who were evaluated as having TB infection and applied anti-TB treatment according to the clinical data and/or positive mycobacterial cultures taken from the other separate samples.
§ Biopsy (i.e. 102 fine needle aspiration biopsy (FNAB) and two surgical materials).
|| sterile body fluids (e.g. pericardial fluid, wound, ascites)

Table II

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPD (%)</th>
<th>NPD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity (%)</td>
<td>Specificity (%)</td>
<td>PPD (%)</td>
<td>NPD (%)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Smear negative</td>
<td>Respiratory</td>
<td>74.3</td>
<td>78.4</td>
<td>96.9</td>
</tr>
<tr>
<td>Nonrespiratory</td>
<td>100.0</td>
<td>100.0</td>
<td>92</td>
<td>96.2</td>
</tr>
<tr>
<td>Total</td>
<td>74.6</td>
<td>78.8</td>
<td>96.7</td>
<td>98.5</td>
</tr>
<tr>
<td>Smear positive</td>
<td>Respiratory</td>
<td>96.7</td>
<td>96.8</td>
<td>N/A</td>
</tr>
<tr>
<td>Nonrespiratory</td>
<td>100.0</td>
<td>100.0</td>
<td>92</td>
<td>96.2</td>
</tr>
<tr>
<td>Total</td>
<td>79.3</td>
<td>82.2</td>
<td>96.7</td>
<td>98.2</td>
</tr>
</tbody>
</table>

* Column A indicates the sensitivity, specificity, positive and negative predictive values compared with the culture, whereas column B indicates the values compared with the culture in combination with the clinical diagnosis.

Sensitivity, specificity, positive and negative predictive values for ProbeTec DTB test in clinical samples
2002; Johansen et al., 2002; Wang et al., 2004; Wang et al., 2006) and positive predictive values (40.9% and 44.7%) (Pfyffer et al., 1999; Wang et al., 2004) for smear negative respiratory samples and higher values of positive predictive values (70–80%) (Abdel-Aziz et al., 2011; Karadag et al., 2013; Rüssch-Gerdes and Richter, 2004) for nonrespiratory samples. The performance values of this system might have been misevaluated due to the low sample population which has been included in these studies. As this study was undertaken with high number of sample population for a long period of time, it was thought that a more precise evaluation was achieved for the diagnostic performance of BD ProbeTec ET in smear negative respiratory samples. In nonrespiratory samples, less number of samples (n = 167) were submitted to our laboratory and a low positivity (n = 17) was found as a natural feature of these samples due to the difficulty in laboratory as well as clinical diagnosis. Thus, in two patients who was evaluated as TB clinically, FNAB samples were negative by both culture and BD ProbeTec. Among thirteen BD ProbeTec positive and culture negative respiratory samples, six fine needle aspiration biopsy and a pleural fluid were recovered from the patients who were evaluated as tuberculosis clinically. In conclusion, in terms of performance values, the ProbeTec ET system has been found as useful in early diagnosis of pulmonary and extrapulmonary TB infection in association with the clinical, radiological and histopathological findings. Nevertheless, the low positive predictive values also address the need for advanced technologies in addition to the conventional methodologies to provide more precise diagnosis in extrapulmonary TB cases.

Literature

Tuberculosis in Antelopes in a Zoo in Poland – Problem of Public Health

MONIKA KRAJEWSKA¹, MICHAŁ ZAŁUSKI², ANNA ZABOST³, BŁANKA ORŁOWSKA⁴, EWA AUGUSTYNOWICZ-KOPEĆ⁵, KRZYSZTOF ANUSZ⁶, MAREK LIPIEC⁷, MARCIN WEINER⁸ and KRZYSZTOF SZULOWSKI⁹

¹ Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
² Veterinary Services Agnieszka Kobos, Jodłowa, Poland
³ Department of Microbiology, Tuberculosis and Lung Disease Institute, Warszawa, Poland
⁴ Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warszawa, Poland
⁵ Pope John Paul II State School of Higher Education in Biała Podlaska, Biała Podlaska, Poland

Submitted 9 December 2014, revised 11 April 2015, accepted 13 April 2015

Abstract

Bovine tuberculosis is an infectious disease that occurs in many species of both domestic and wild animals, as well as those held in captivity. The etiological factor is the acid resistant bacillus (Mycobacterium bovis or Mycobacterium caprae), which is characterized by the major pathogenicity among mycobacteria belonging to the Mycobacterium tuberculosis complex. The material from 8 antelopes from the zoo, suspected for tuberculosis were examined, and M. bovis strains were isolated from 6 of them. The spoligotyping method showing spoligo pattern 676763777777600. In Poland, this spoligotype has not been observed so far.

Keywords: Mycobacterium bovis, antelopes, MTBC, public health, zoo

Mycobacterium bovis is the main cause of tuberculosis in cattle (TB), and other bovids. It is one of the species belonging to the *Mycobacterium tuberculosis* complex (MTBC) (Rodriguez-Campos et al., 2014). The first complete genome sequence of strain *M. bovis* was described in 2003 (Garnier et al., 2003). *M. bovis* is characterized by natural resistance to pyrazinamide (PZA), one of the most important antibiotics used in the treatment of tuberculosis. PZA resistance phenotype may vary depending on the environment, therefore the test cannot be the basis for species identification (Krajewska et al., 2013). BTB is a quite common zoonotic disease occurring in wild animals kept in zoos and wild animal parks. Tuberculosis caused by members of MTBC has been confirmed, *inter alia*, in Asian elephants (*Elephas maximus*), baboons (*Papio hamadryas*), leopards (*Panthera uncia* and *Panthera pardus*), buffalos (*Bison bonasus*), bison (*Bison bison*), red deers (*Cervus elaphus*) and sea-lions (*Otaria byrona*) (Thorel et al., 1998; Lewerin et al., 2005; Schmidbauer et al., 2007). This disease is characterized mainly by the symptoms of general weakness, progressive emaciation and respiratory dysfunction. The aim of the study was to describe the case of tuberculosis in antelopes family (*Addax nasomaculatus*).

The BTB outbreak was detected in the zoo in Chorzów, in 2010. The described herd consisted of 3 males and 5 females, held in the same pavilion. The age of the animals ranged from several months to 10 years (Table I). Incidences of BTB had been reported in that zoo prior to the above mentioned outbreak. Problems with tuberculosis returned in 2010, since two male giraffes were transferred to another zoo, to avoid infection. In October 2010, field veterinarians detected clinical signs of the disease (respiratory track infection and distress) and sudden deaths of the two youngest addaxes (Table I). BTB lessions were observed in the necropsy of both of these antelopes. Lessions were changed as a visible foci of conglomerate lobar pneumonia. The tubercules (from 2 to 8 mm) were observed in the mediastinal lymph nodes with yellowish content in the cut surface. After that incident, the rest of the antelopes were tested using the official bovine PPD, according to the Polish official instruction. All 6 animals were BTB positive, showing a skin fold thickness increase of 4 or more mm and they were euthanized (Table I). The material
for the microbiological examination was collected post mortem and appropriate set of lymph nodes and parenchymal organs were derived from a total number of 8. The samples were subjected to laboratory testing, using the standard procedures (Augustynowicz-Kopeć et al., 2011). The GenoType Mycobacterium CM assay (Hain Lifescience, Germany) was performed for the identification of the isolated strains, as recommended by the manufacturer.

Among all the examined antelopes, tuberculous lesions were observed in the thoracic lymph nodes in 5 animals. After 6 weeks a visible growth of acid-fast bacilli in the slants with tissue material from 6 animals was found. The final identification and genotyping of the strains was based on spoligotyping analysis (Kamerbeek et al., 1997). The spoligotyping method indicated that among all the isolated strains belong to M. bovis, showing a spoligotype pattern 676763777777600, which is described in the published literature, there is no information indicating their source of isolation. In Poland, this spoligotype has not been observed so far. It seems that with exchange, the problem of tuberculosis returned to the Polish zoos. As regards the case of the confirmation of the infection with M. bovis at the zoo, the thorough disinfection of the cages were kept. All the staff should be examined as a person “of contact” by a pulmonologist. The workers of the zoo should have a tuberculin skin test, a chest X-ray and they should be interviewed carefully as regards the occurrence of subfebrile temperature, wekanesses, cough, etc.

In the SITVIT WEB, only the strains of 676763777777600 spoligotype, isolated in Germany, are additionally described as originated from cattle.

Only in the case of the 3 strains isolated in France their animal origin is given, however there is no information on what specific animal species they refer to (Haddad et al., 2001), and even the original data presented in the paper does not make it possible to identify the animal species. For the other strains described in the published literature, there is no information indicating their source of isolation. In Poland, this spoligotype has not been observed so far. It seems that with exchange, the problem of tuberculosis returned to the Polish zoos. As regards the case of the confirmation of the infection with M. bovis at the zoo, the thorough disinfection of the cages were kept. All the staff should be examined as a person “of contact” by a pulmonologist. The workers of the zoo should have a tuberculin skin test, a chest X-ray and they should be interviewed carefully as regards the occurrence of subfebrile temperature, wekanesses, cough, etc. Also, it should be checked if any of the staff suffered from tuberculosis in the past. Perhaps, the sick human is the source of infection. In Poland, the number of tuberculosis patients is slightly lower than in the previous year. The incidence of tuberculosis in Poland is still higher than the average in the European Union countries, Norway and Iceland.

<table>
<thead>
<tr>
<th>Animal name</th>
<th>Data of birth/Sex</th>
<th>Kinship</th>
<th>Place of birth</th>
<th>Clinical symptoms</th>
<th>Tuberculin skin test results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TUSIA</td>
<td>2010-03-02 female</td>
<td>Father: Czesio, Mother: Matylda</td>
<td>ZOO Chorzów</td>
<td>respiratory problems</td>
<td>sudden death not tested</td>
</tr>
<tr>
<td>2. ARIEL</td>
<td>2010-03-13 male</td>
<td>F: Czesio, M: Młoda</td>
<td>ZOO Chorzów</td>
<td>respiratory problems, convulsions</td>
<td>sudden death not tested</td>
</tr>
<tr>
<td>3. IWANKA</td>
<td>2000-08-11 female</td>
<td>unknown</td>
<td>ZOO Rotterdam</td>
<td>Zero symptoms</td>
<td>Positive result (6 mm)</td>
</tr>
<tr>
<td>4. CZESIO</td>
<td>2004-11-22 male</td>
<td>unknown</td>
<td>ZOO Prague</td>
<td>Zero symptoms</td>
<td>Positive result (4 mm)</td>
</tr>
<tr>
<td>5. KOKOLINO</td>
<td>2010-03-15 male</td>
<td>F: Czesio, M: Ivanka</td>
<td>ZOO Chorzów</td>
<td>Zero symptoms</td>
<td>Positive result (4 mm)</td>
</tr>
<tr>
<td>6. SONIA</td>
<td>2000-12-30 female</td>
<td>F: unknown, M: Ivanka (came pregnant)</td>
<td>ZOO Chorzów</td>
<td>Zero symptoms</td>
<td>Positive result (6 mm)</td>
</tr>
<tr>
<td>7. MATYLDA</td>
<td>2000-06-08 female</td>
<td>F: Konrad, M: Młoda</td>
<td>ZOO Chorzów</td>
<td>Zero symptoms</td>
<td>Positive result (6 mm)</td>
</tr>
<tr>
<td>8. MŁODA</td>
<td>2004-05-26 female</td>
<td>F: Konrad, M: Młoda</td>
<td>ZOO Chorzów</td>
<td>Zero symptoms</td>
<td>Positive result (8 mm)</td>
</tr>
</tbody>
</table>

The antelopes family (Addax nasomaculatus) and their kinship. Konrad, Mimi and Nora, three antelopes had died earlier – not examined.
The occurrence of the new multi-drug-resistant strains complicates the already long-lasting treatment, which sometimes even leads to the death of the patient (Kruczak and Niżankowska-Mogilnicka, 2009; Kozinski et al., 2011). Bovine tuberculosis in zoos, should be reported to the sanitary and epidemiological stations for the sake of public health protection. Early diagnosis in both humans and animals constitutes a very important element of success in the treatment of such dangerous a disease.

Human tuberculosis caused by M. tuberculosis and bovine bacillus (M. bovis and M. caprae) provide a very similar clinical picture, therefore, a well-organized and equipped microbiology laboratory is responsible for the identification of microorganisms (Augustynowicz-Kopeć and Zwolska, 2010). The main transmission route of the human infection with M. bovis is usually raw milk from infected cows or a direct contact with an infected animal, with people visiting zoological gardens beeing a good example of the latter (van der Heever, 1984; Okolo, 1992; Stone et al., 2011). The data concerning human tuberculosis caused by bovine bacillus (M. bovis and M. caprae) comes from 25 EU countries, except Greece and France (Osek and Wieczorek, 2013). In 132 confirmed cases of human tuberculosis in the European Union, the greatest numbers were observed in Germany (38 people), the UK (31 cases) and Spain (22). Thirteen EU countries did not report any bovine tuberculosis in humans. As regards the countries outside the EU, 13 cases were noted in Switzerland and 2 cases in Norway. In Poland, bovine tuberculosis in humans has not been diagnosed. The World Health Organization (WHO) estimates that in the countries where human tuberculosis is poorly supervised, 1% of the disease in humans is caused by bovine bacillus.

Literature

This is the first study on the genetic diversity, drug resistance and population structure of Beijing-TB in Poland. The study included a total of 1095 (~4% all bacteriologically confirmed cases) Mycobacterium tuberculosis isolates collected in 2007–2011 in the National TB Reference Laboratory (NTRL) at the National Tuberculosis and Lung Diseases Research Institute in Warsaw. Primary isolation, species identification, and drug susceptibility testing (DST) were done at regional mycobacteriology laboratories. The isolates were subcultured and sent to NTRL, where confirmatory identification and DST were performed. Available demographic data was collected for all patients, such as age, gender, and country of origin. Genomic DNA was obtained from M. tuberculosis colonies on L-J slants by the cetyltrimethyl-ammonium bromide (CTAB) method (van Embden et al., 1993).

All isolates were characterized by spoligotyping with a commercially available kit (Isogen Bioscience BV, Maarssen, The Netherlands) according to the instructions provided by the manufacturer and as described previously (Kamerbeek et al., 1997).

The patterns obtained by spoligotyping were compared by visual examination and by sorting the results in BioNumerics software version 5.10 (Applied Maths, Kortrijk, Belgium). The spoligotypes were also compared with those contained in the international database SpolDB4 (Brudey et al., 2006). The isolates of the Beijing genotype were defined by showing hybridization to eight or nine (absent the 37 spacer) spacers between spacers 35 and 43, and showing the absence of hybridization to spacers 1–34 (Kremer et al., 2004; Mokrousov et al., 2002).

Of the 71 (6.5%) strains that were defined by spoligotyping to be of the Beijing genotype, 61 (86%) had all the characteristic spacers from 35 to 43, corresponding to the shared type ST1, and 10 (14%) isolates lacked spacer 37, corresponding to ST265.

Of the 1024 patients with non-Beijing strains, 1018 (99.4%) were born in Poland and 6 were (0.6%) born abroad. Two-hundred twenty-four (21.9%) were infected with drug-resistant (DR) (222 Polish-born, 2 foreigners) and 800 (78.1%) with drug-sensitive (DS) strains (796 Polish-born, 4 foreigners). Of the 71 patients with Beijing strains, 42 (59.2%) were born in Poland. Five of them (11.9%) were infected with DS and 37 (88.1%) were infected with DR strains. Among 29 (40.8%) Beijing strains isolated from foreigners, 8 (27.6%) were DS and 21 (72.4%) were DR strains. Among Polish-born, the majority (57.1%) of patients with Beijing strains were in the 45–64 age group; among foreigners the majority were in the 15–34 age group (58.6%) (Table I).

Of the 29 patients with Beijing strains who were foreign-born, a large proportion (93%) came from Europe and Asia; the majority of these patients were
Kozińska M. and Augustynowicz-Kopeć E.

Several studies have suggested an association between young age and the Beijing genotype family (Buu et al., 2009; Zanini et al., 2014). Although the Beijing genotype is more common among young patients, we did not find such a correlation in the group of Polish-born patients (9.5%), but observed it among foreign-born males (58.6%) (P < 0.001). This suggests that the primary reservoir of Beijing family strains in Poland is young immigrants who came to Poland from the East. It is possible that some of the Beijing strain infections were in fact acquired among Polish-born patients during transmission from young and middle-aged immigrants crossing the Polish border and seeking employment.

An additional argument for the transmission of tuberculosis is the observation that the majority of patients with Beijing-TB belonged to the group of newly diagnosed patients, both among immigrants and Polish-born population.

Numerous molecular epidemiological studies, carried out in various geographical settings, have suggested an association between drug resistance, specifically MDR-TB, and the Beijing genotype strain (Filliol et al., 2002; Toungoussova et al., 2004; Drobniewski et al., 2005; Kubica et al., 2005; Park et al., 2005; Caws et al., 2006; Hasan et al., 2006; Victor et al., 2007; Dymova et al., 2014; Maeda et al., 2014). Review of molecular epidemiological data from XDR-TB strains has shown an association between XDR-TB and the Beijing genotype in isolates from South Africa, Estonia, China, Japan and Russia (Iwamoto, 2009; Dheda et al., 2010; Casali et al., 2012).

In this study the prevalence of drug-resistance was significantly higher (P < 0.001) in Beijing strains than in non-Beijing isolates (81.7% vs 21.9%). We found strong associations between Beijing genotype infection and MDR, pre-XDR and XDR resistance, with a considerable relative risk among new patients (P = 0.02), suggesting that it is increased spread of MDR-TB strains from Chechnya (38%) and Vietnam (24%), where the Beijing genotype has been reported to be most prevalent (Merker et al., 2015). The others were from Georgia, Russia, Tibet, India, Ukraine, Slovakia, one from Africa (Nigeria) and one from North America (USA).

Altogether 282 Drug Resistant (DR) and 813 Drug Sensitive (DS) isolates from 1095 patients were identified. The results of drug resistance testing are shown in Table II. While 27 (38%) of the Beijing strains were MDR, 15 (21.1%) pre-XDR and 4 (5.4%) XDR, only 59 (5.8%) of the 1024 non-Beijing strains were MDR, 16 (1.6%) pre-XDR and 14 (1.4%) were XDR during the same period.

Table I

<table>
<thead>
<tr>
<th>Age group</th>
<th>Polish-born</th>
<th>Foreign-born % (no. of patients)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–14</td>
<td>2.4 (1)</td>
<td>10.3 (3)</td>
<td>5.6 (4)</td>
</tr>
<tr>
<td></td>
<td>2.4 (1)</td>
<td>24.1 (7)</td>
<td>11.3 (8)</td>
</tr>
<tr>
<td></td>
<td>7.1 (3)</td>
<td>34.5 (10)</td>
<td>18.3 (13)</td>
</tr>
<tr>
<td>15–24</td>
<td>14.3 (6)</td>
<td>13.8 (4)</td>
<td>14.1 (10)</td>
</tr>
<tr>
<td></td>
<td>33.3 (14)</td>
<td>10.3 (3)</td>
<td>23.9 (17)</td>
</tr>
<tr>
<td></td>
<td>23.8 (10)</td>
<td>3.5 (1)</td>
<td>15.5 (11)</td>
</tr>
<tr>
<td>25–34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35–44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45–54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55–64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88.1 (37)</td>
<td>79.3 (23)</td>
<td>84.5 (60)</td>
</tr>
<tr>
<td>Female</td>
<td>11.9 (5)</td>
<td>20.7 (6)</td>
<td>15.5 (11)</td>
</tr>
<tr>
<td>TB treatment history*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New patient</td>
<td>57.1 (24)</td>
<td>51.7 (15)</td>
<td>55.0 (39)</td>
</tr>
<tr>
<td>Previously treated</td>
<td>31.0 (13)</td>
<td>10.3 (3)</td>
<td>22.5 (16)</td>
</tr>
</tbody>
</table>

* Data missing for 11 foreign-born and 5 Polish-born patients.

Table II

<table>
<thead>
<tr>
<th>Total</th>
<th>% drug resistant (no. of patients with drug resistance)</th>
<th>Any drug</th>
<th>MDR</th>
<th>Pre-XDR</th>
<th>XDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polish-born</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td>42</td>
<td>88.1 (37)</td>
<td>50 (21)</td>
<td>28.6 (12)</td>
<td>7.1 (3)</td>
</tr>
<tr>
<td>Non-Beijing</td>
<td>1018</td>
<td>21.8 (222)</td>
<td>5.8 (59)</td>
<td>1.6 (16)</td>
<td>1.4 (14)</td>
</tr>
<tr>
<td>Immigrants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td>29</td>
<td>72.4 (21)</td>
<td>20.7 (6)</td>
<td>10.3 (3)</td>
<td>3.4 (1)</td>
</tr>
<tr>
<td>Non-Beijing</td>
<td>6</td>
<td>33.3 (2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td>71</td>
<td>81.7 (58)</td>
<td>38 (27)</td>
<td>21.1 (15)</td>
<td>5.4 (4)</td>
</tr>
<tr>
<td>Non-Beijing</td>
<td>1024</td>
<td>21.9 (224)</td>
<td>5.8 (59)</td>
<td>1.6 (16)</td>
<td>1.4 (14)</td>
</tr>
</tbody>
</table>
rather than acquisition of MDR-TB during treatment that defines this association.

This is the first study on Beijing-TB in the patient population in Poland. Further molecular and epidemiological analyses are required to determine the genetic relatedness between strains and analyse possible transmission of tuberculosis between patients.

Literature

CONTENTS
Vol. 64, 1–4, 2015

No 1

MINIREVIEW
Virus like particles as immunogens and universal nanocarriers
NASKALSKA A., PYRĆ K. .. 3

ORIGINAL PAPERS
Epidemiology and genotyping of patients with chronic hepatitis B: genotype shifting observed in patients from Central Europe
Species-specific identification of human adenoviruses in sewage
WIECZOREK M., KRZYSZTOSZEK A., WITEK A. .. 23
Effect of DNA extraction methods on the apparent structure of yak rumen microbial communities as revealed by 16S rDNA sequencing
CHEN Y.-B., LAN D.-L., TANG C., YANG X.-N., LI J. .. 29
Bacterial diversity in Çamaltı Saltern, Turkey
MUTLU M. B., GUVEN K. .. 37
Sulfur removal from dibenzothiophene by newly isolated Paenibacillus validus strain PD2 and process optimization in aqueous and biphasic (model-oil) systems
DERIKVAND P., ETEMADIFAR Z., SABER H. ... 47

SHORT COMMUNICATIONS
Recombinant MAG1 protein of Toxoplasma gondii as a diagnostic antigen
GATKOWSKA J.M., DZIADEK B., DZIADEK J., DZITKO K., DŁUGOŃSKA H. .. 55
Optimized protocol for PFGE analysis of Anginosus (milleri) Streptococci
OBŚZANSKA K., KERN-ZDANOWICZ L., SITKIEWICZ I. .. 61
PCR detection of Scopulariopsis brevicaulis
KORDALEWSKA M. and BRILLOWSKA-DĄBROWSKA A. ... 65
Effect of antibiotics on polymorphonuclear leukocyte functions and myeloperoxidase activity, glutathione and malondialdehyde levels in allergic asthma
RAYAMAN P., RAYAMAN E., ÇEVİKBAŞ A., DEMİRTÜNÇ R., ŞEHIRLI A.O., ALAGÖZ Ş.G., GÜRER Ü.S. .. 69
The prevalence of Campylobacter spp. and occurrence of virulence genes isolated from dogs
SEIWET M., CLAPA T., GALBAS M., SŁOMSKI R., PORZUCEK E. .. 73

INSTRUCTION FOR AUTHORS ... 77
MINIREVIEWS

Acyldepsipeptide antibiotics – current state of knowledge
MICHAŁ T., PSTRĄGOWSKI M.T., BUJALSKA-ZADROŻNY M. .. 85

Intestinal microbiota, obesity and prebiotics
BARCZYNSKA R., BANDURSKA K., SLIZEWSKA K., LITWIN M., SZAŁECKI M., LIBUDZISZ Z., KAPUSNIAK J. 93

ORIGINAL PAPERS

Characteristics of the Pseudomonas aeruginosa PA01 intercellular signaling pathway (Quorum Sensing) functioning in presence of porphyrins bismuth complexes
GALKIN M., IVANITSIA V., ISHKOV Y., GALKIN B., FILIPOVA T. .. 101

Kinetic properties of pyruvate ferredoxin oxidoreductase of intestinal sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9
KUSHKEVYCH I.V. ... 107

The application of impedance microsensors for real-time analysis of Pseudomonas aeruginosa biofilm formation
CHABOWSKI K., JUNKA A.F., SZYMCZYK P., PIASECKI T., SIERAKOWSKI A., MĄCZYŃSKA B., NITSCH K. 115

Chemical composition and antibacterial activity of essential oils of two species of Lamiaceae against phytopathogenic bacteria
GORMEZ A., BOZARI S., YANMIS D., GULLUCE M., SAHIN F., AGAR G. .. 121

Investigation of the actual causes of hip joint implant loosening classified as aseptic – analysis of microbiological culture results and levels of inflammatory markers
STRZELEC-NOWAK D., KOZIOŁ-MONTEWKA M., NIEDŹWIEDEK J., BOGUT A., BLACHA J., MAZURKIEWICZ T. 129

In vitro studies of antibacterial and antifungal wound dressings comprising H₂TiO₃ and SiO₂ nanoparticles

Escherichia coli and Salmonella spp. early diagnosis and seasonal monitoring in the sewage treatment process by EMA-qPCR method
KACPRZAK M., FIJAŁKOWSKI K., EHTESHAMUL-HAQUE S., ATHAR M. .. 143

Biologically-induced precipitation of minerals in a medium with zinc under sulfate-reducing conditions
WOLJKOWICZ T., BORKOWSKI A., JANKEWICZ U., STEPIEN W., KOWALCZYK P. .. 149

Role of antagonistic microorganisms and organic amendment in stimulating the defense system of okra against root rotting fungi
SHAFIQUE H.A., SULTANA V., ARA J., EHTESHAMUL-HAQUE S., ATHAR M. .. 157

Biodiversity of dominant cultivable endophytic bacteria inhabiting tissues of six different cultivars of maize (Zea mays L. spp. mays) cropped under field conditions
PISARSKA K., PIETR S.J. .. 163

SHORT COMMUNICATIONS

Characterisation of Yersinia secretion apparatus-pathogenicity island (Ysa-PI) of Yersinia enterocolitica 1B/O8 in Poland: an idle Ysa is a specific hallmark of the epidemic sensu stricto strain
WOLJKOWICZ T., ZACHARCZUK K., ROKOSZ-CHUDZIAK R., RASTAWICKI W., GIERCZYŃSKI R. 171

Immunomodulatory effect of β-glucan on peritoneal macrophages of Balb/c mice
ROUDARY M., DANESHMANDI S., HAJIMORADI M., ROUDBARMOHAMMADI S., HASSAN Z.M. 175

Bacterial diversity and abundance in shell biofilms from the freshwater snail Pleurocera canaliculatum (cerithioidea: Pleuroceridae)
MINTON R.L., CREECH C.C., JACKSON D.W. .. 181

Isolation and antimicrobial testing of Aeromonas spp., Citrobacter spp., Cronobacter spp., Enterobacter spp., Escherichia spp., Klebsiella spp., and Trabulsiella spp. from the gallbladder of pigs
EVANGELOPOULOU G., FILIOUSSIS G., KITAS S., KANTERE M., BURRIEL A.R. .. 185
No 3

MINIREVIEW
CRISPR-Cas Systems in Prokaryotes
BURMISTRZ M., PYRĆ K. ... 193

ORIGINAL PAPERS
Role of SAP7-10 and morphological regulators (EFG1, CPH1) in Candida albicans’ hypha formation and adhesion to colorectal carcinoma Caco-2
STANISZEWSKA M., BONDARYK M., ZUKOWSKI K., CHUDY M. ... 203
The participation of p53 and bcl-2 proteins in gastric carcinomas associated with Helicobacter pylori and/or Epstein-Barr virus (EBV)
SZKARADKIEWICZ A., KARPINSKI T.M., MAJEWSKI J., MALINOWSKA K., GOŚLIŃSKA-KUŹNIAREK O., LINKE K. .. 211
Bloodstream infections due to Enterobacteriaceae among neonates in Poland – molecular analysis of the isolates
CHMIELARCZYK A., POBIEGA M., WÓJKOWSKA-MACH J., ROMANISZYN D., HECKHO PB., BULANDA M. 217
Optimization of culture parameters for maximum polyhydroxybutyrate production by selected bacterial strains isolated from rhizospheric soils
LATHWAL P., NEHRA K., SINGH M., JAMDAGN I., RANA J.S. .. 227
Phytoremediation of polycyclic aromatic hydrocarbons in soils artificially polluted using plant-associated-endophytic bacteria and Dactylis glomerata as the bioremediation plant
GAŁĄZKA A., GAŁĄZKA R. ... 241
Characteristics of newly isolated Geobacillus sp. ZY-10 degrading hydrocarbons in crude oil
SUN Y., NING Z., YANG F., LI X. ... 253
Evaluation of two lactic acid bacteria starter cultures for the fermentation of natural black table olives (Olea europaea L cv Kalamon)
PAPADELLI M., ZOUMPOPOULOU G., GEORGALAKI M., MANOLOPOULOU E., LYTRA I, PAPADIMITRIOU K., TSALKALIDOU E. ... 265
Activity of natural polyether ionophores: monensin and salinomycin against clinical Staphylococcus epidermidis strains
STEFAŃSKA J., STĘPIEŃ K., HUCZYŃSKI A., TYSKI S. ... 273

SHORT COMMUNICATIONS
Chaperone DnaJ influences the formation of biofilm by Escherichia coli
GRUDNIAK A.M., WŁODKOWSKA J., WOLSKA K.I. .. 279
Characterization of extended-spectrum-β-lactamases produced by Escherichia coli strains isolated from dogs in Poland
RZEWUSKA M., STEFANSKA I., KIZERWETTER-SWIDA M., CHROBIAK-CHMIEŁ D., SZCZYGIELSKA P., LEŚNIAK M., BINEK M. ... 285
Epidemiological analysis of Mycobacterium tuberculosis strains isolated from patients of small communities living in the South-East of Poland
ŻACZEK A., SZWAJA I., SKIBA M., BRZOSTEK A., PUCHALSKI C., LEWANDOWSKA K., DZIADEK J. .. 289
Relapsing bacteraemia due to Corynebacterium striatum in a patient with peripheral arterial disease
TOPIĆ A., ĆIVLIJA R., BUTIĆ I., GUVINEM C., KUZMAN I. .. 295
N-Substituted N’-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)guanidines – antibacterial, cytotoxic activities and some structure-activity relationships
ZOLNOWSKA B., SLAWINSKI J., GRZONEK A., KĘDZIA A., KWAPISZ E., KAWIAC K. .. 299
The effect of FeO nanoparticles on survival of probiotic bacteria Lactobacillus acidophilus PCM2499 at lower pH
JURKOWSKI A., ZAPOTOCZYŃ B., KOZIOŁ J.J., DUDEK M.R. .. 307
MINIREVIEW

Significance of meningococcal hyperinvasive clonal complexes and their influence on vaccines development
WAŚKÓ I., HRYNIEWICZ W., SKOCZYNSKA A. .. 313

ORIGINAL PAPERS

Prevalence of Polyoma BK virus (BKPyV), Epstein-Barr virus (EBV) and Human Papilloma virus (HPV)
in oropharyngeal cancer
POLZ-GRUSZKA D., MORSHEP K., JARZYŃSKI A., POLZ-DACEWICZ M. 323

Biodecolorization and bioremediation of denim industrial wastewater by adapted bacterial consortium immobilized
on inert polyurethane foam (PUF) matrix: A first approach with biobarrier model
RAJENDRAN R., PRABHAVATHI P., KARTHIKSUNDARAM S., PATTAI S., DINESH KUMAR S., SANTHANAM P. 329

Isolation and characterization of Streptomyces with plant growth promoting potential from mangrove ecosystem
SHRIVASTAVA P., KUMAR R., YANDIGERI M.S., MALVIYA N., ARORA D.K. 339

Germination and inactivation of Alicyclobacillus acidoterrestris spores induced by moderate hydrostatic pressure
SOKOŁOWSKA B., SKAPSKA S., FONBERG-BROCZEK M., NIEZGODA J., PORĘBSKA I., DEKOWSKA A., RZOSKA S.J. 351

Autochthonous gut bacteria in two Indian air-breathing fish, climbing perch (Anabas testudineus) and walking catfish
(Clarias batrachus): mode of association, identification and enzyme producing ability
BANERJEE G., DAN S.K., NANDI A., GHOSH P., RAY A.K. .. 361

Physiology and molecular phylogeny of bacteria isolated from alkaline distillery lime
KALWASINSKA A., FELFOLDI T., WALCZAK M., KOSOBUCKI P. .. 369

SHORT COMMUNICATIONS

Inhibitory effect of newly-synthesized chalcones on hemolytic activity of methicillin-resistant Staphylococcus aureus
BOŽIĆ D.D., MILENOVIĆ M.T., IVKOVIC B.M., LARSEN A.R., CIIRKOVIĆ I.B. ... 379

Molecular methods for the direct molecular detection of Mycobacterium tuberculosis complex
in respiratory and nonrespiratory clinical samples
BIČMEN C., KARAMAN O., GUNDERO O., ERER O.F., COSKUN M., KAFTAN O., DEMIREL M.M., SENOL G., AKARCA T.,
DERELI Ş., OZSOZ A. ... 391

Tuberculosis in antelopes in a zoo in Poland – problem of public health
KRAJEWSKA M., ZAŁUSKI M., ZABOST A., ORŁOWSKA B., AUGUSTYNOWICZ-KOPEC E., ANUSZ K., LIPIEC M.,
WEINER M., SZUŁOWSKI K. ... 395

Drug resistance and population structure of Mycobacterium tuberculosis Beijing strains isolated in Poland
KOZIŃSKA M., AUGUSTYNOWICZ-KOPEC E. .. 399
Author Index

Polish Journal of Microbiology
Vol. 64, 1–4, 2015

A

Agar G. 121
Akarca T. 391
Alagöz Ş.G. 69
Anastasiou R. 263
Anusz K. 395
Ara J. 157
Arora D.K. 339
Athar M. 157
Augustynowicz-Kopeć E. 395, 399

B

Banasiewicz T. 137
Banerjee G. 361
Barczynska R. 93
Berg C.P . 15
Bicmen C. 391
Binek M. 283
Bissinger A.L. 15
Blacha J. 129
Bobkiewicz A. 137
Bobkiewicz M. 129
Bogut A. 129
Bondaryk M. 201
Borkowski A. 149
Bozari S. 121
Bożik D.D. 379
Brillowska-Dąbrowska A. 65
Brzostek A. 287
Bujalska-Zadrożny M. 85
Bulanda M. 215
Burmistrz M. 191
Burril A.R. 185
Butić I. 293

C

Çevikbaş A. 69
Chabowski K. 115
Chen Y. 29
Chmielarczyk A. 215
Chrobak-Chmiel D. 283
Christ A. 383
Chudy M. 201
Čivljak R. 293
Clapa T. 73
Coschun M. 391
Creech C.C. 181
Cirković I.B. 379

D

dan S.K. 361
Daneshmandi S. 175
Dekowska A. 351
Demirel M.M. 391
Demirtunç R. 69
Demkow U. 387
Dera-Tomaszewska B. 383
Dereli S. 391
Derikvand P. 47
Dinesh Kumar S. 329
Drews M. 137
Dudek M.R. 305
Dziadek B. 55
Dziadek J. 55, 287
Dzitko K. 55

E

Ehteshamul-Haque S. 157
Erer O.F. 391
Etemadifar Z. 47
Evangelopoulos G. 185

F

Fehrle C. 15
Felföldi T. 369
Fijalkowski K. 143
Filoussis G. 185
Filipova T. 101
Fonberg-Broczek M. 351

G

Galbas M. 73
Galikin B. 101
Galin M. 101
Gałązka A. 239
Gałązka R. 239
Gatkowska J.M. 55
Georgalaki M. 263
Ghosh P. 361
Gierczyński R. 171, 387
Gomez A. 121
Goślińska-Kuźniarek O. 209
Grobela M. 143
Grudniak A.M. 277
Grzonek A. 297
Gulluce M. 121
Gunduz A.T. 391
Guérer U.S. 69
Guévin K. 37

H

Hajimoradi M. 175
Hassan Z.M. 175
Hečko P.B. 215
Hryniewicz W. 313
Huczyński A. 271

I

Ishkov Y. 101
Ivanitsia V. 101
Ivković B.M. 379

J

Jackson D.W . 181
Jamdagni P. 225
Jarzyński A. 323
Junka A.F . 115
Jurkowski A. 305

K

Kaczprzak M. 143
Kafant O. 391
Kalwasińska A. 369
Kantere M. 185
Kapusiak J. 93
Karaman O. 391
Karpinski T.M. 209
Karthik Sundaram S. 329
Kawiak A. 297
Kern-Zdanowicz I. 61
Kędzia A. 297
Kiserwetter-Švida M. 283
Kordalewska M. 65
Kosobucki P. 369
Kowalczyk P. 149
Koziełska M. 399
Kozioł J.J. 305
Kozioł-Montewka M. 129
Krajewska M. 395
Kritas S. 185
Krokwicz L. 137
Krzysztofowicz A. 23
Kumar R. 339
Kushkevych I.V. 107
Kuzman I. 293
Kwapisz E. 297

L

Lan D. 29
Larsen A.R. 379
Lathwal P. 225
Lauer U.M. 15
Leśniak M. 283
Lewandowska K. 287
Li J. 29
Li X. 251
Libudzisz Z. 93
Linke K. 209
Lipiec M. 395
Litwin M. 93
Lytra I. 263

M

Mackiewicz J. 137
Madajczak G. 383
Majewski J. 209
Malek N.P . 15
Malinowska K. 287
Malwiya N. 339
Manolopoulou E. 263
Marciniak R. 137
Mazurkiewicz T. 129
Maź cynska A. 115
Milenković M.T. 379
Milenković M.T. 379
Minton R.L. 181
Morshed K. 323
Mutlu M.B. 37

N
Nandi A. 361
Naskalska A. 3
Nehra K. 225
Niedźwiadek J. 129
Niezgoda J. 351
Ning Z. 251
Nitsch K. 115

O
Obszańska K. 61
Orłowska B. 395
Ozsoz A. 391

P
Papadelli M. 263
Papadimitriou K. 263
Pattabi S. 329
Piasecki T. 115
Piekarska K. 387
Pietr S.J. 163
Pisarska K. 163
Pobiega M. 215
Podsiadły E. 387
Polz-Dacewicz M. 323
Polz-Gruszka D. 323
Porębska I. 351
Porzucek F. 73
Prabhavathi P. 329
Pragowksa M.T. 85
Puchalski C. 287
Pyrc K. 3, 191
Rajendran R. 329
Rana J.S. 225
Rastawicki W. 171
Ray A.K. 361
Rayaman E. 69
Rayaman P. 69
Rokosz-Chudziak N. 171
Romaniszyn D. 215
Rorat A. 143
Rosikor K. 143
Roudbarmohammadi S. 175
Roudary M. 175
Rzeczewska M. 387
Rzewuska M. 283
Rzoska S.J. 351
Saber H. 47
Sahin F. 121
Santhanam P. 329
Şehirli A.O. 69
Selwet M. 73
Senol G. 391
Shafique H.A. 157
Shrivastava P. 339
Sierakowski A. 115
Singh M. 225
Sitkiewicz I. 61
Skapska S. 351
Skiba M. 287
Skoczyńska A. 313
Slizewska K. 93
Ślawiński J. 297
Slomski R. 73
Sokołowska B. 351
Staniszewska M. 201
Stefanińska I. 283
Stefanińska J. 271
Stępień K. 271
Stępień W. 149
Strzelec-Nowak D. 129
Sultana V. 157
Sun Y. 251
Szalecki M. 93
Szczygiełska P. 283
Szkardkiewicz A. 209
Szulowski K. 395
Szwaja I. 287
Szych J. 383
Szymczyk P. 115

T
Tang C. 29
Tomczak H. 137
Topić A. 293
Tsakalidou E. 263
Tyski S. 271

W
Walczak M. 369
Wasiak M. 383
Waśko I. 313
Weiner M. 395
Werner C.R. 15
Wieczorek M. 23
Witek A. 23
Włodkowska J. 277
Wolicka D. 149
Wolska K.I. 277
Wolkowicz T. 171
Wolkovitch T. 387
Wójkowska-Mach J. 215

Y
Yandigeri M.S. 339
Yang F. 251
Yang X. 29
Yanmis D. 121

Z
Zabost A. 395
Zacharczuk K. 171, 387
Załuski M. 395
Zapotoczny B. 305
Zoumpopoulou G. 263
Żaczek A. 287
Zolnowska B. 297
Żukowski K. 201
ACKNOWLEDGEMENTS

The Editors of Polish Journal of Microbiology wish to express their gratitude to following scientists from various fields of microbiology, who have reviewed the manuscripts submitted to our Journal in the past year:
